K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi Q là giao điểm của PF và AK ,I là giao điểm của PE và CL

Trong △ FPE ta có: PE//AK hay QM //PE

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (định lí ta-lét) (1)

Trong  △ ALO ta có:PF //CL hay FQ //LO

Suy ra:Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (định lí ta-lét) (2)

Trong  △ ALC ta có: PF // CL

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (định lí ta-lét) (3)

Từ (2) và (3) suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vì LO = 1/3 CL (O giao điểm của hai đường trung tuyến) nên Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (4)

Từ (1) và (4) suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 ⇒ FM = 1/3 FE

Trong  △ EPF ta có:PF // CL hay NI // PF

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (định lí ta –lét) (5)

Trong  △ CKO ta có: EI // OK

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (định lí ta –lét) (6)

Trong CKA ta có:PE // AK

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (định lí ta –lét) (7)

Từ (6) và (7) suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vì OK = 1/3 AK (O là giao điểm của hai đường trung tuyến) nên Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (8)

Từ (5) và (8) suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 ⇒EN = 1/3 EF

Ta có: MN = EF - (EN + FM) = EF - (1/3 EF + 1/3 EF) = 1/3 EF

Vậy EN = MN = NF

Gọi H là giao của PF và AK, I là giao của PE và CN

Xét ΔFPE có PE//AK

=>HM//PE

=>FH/FB=FM/FE

Xét ΔANO có PF//CN

=>FH//NO

=>AF/AN=FH/NO

ΔALC có PF//CN

nên AF/AN=FP/CN

=>FH/NO=FP/CN

=>FH/EP=NO/CN

NO=1/3CN

nên FH/FP=1/3

=>FM/FE=1/3

=>FM=1/3FE

PF//CN

=>QI//PF

=>EI/EP=EQ/EF

EI//OK

=>CE/CK=EI/KO

PE//AK

=>CE/CK=EP/AK

=>EI/OK=EP/AK

=>EI/EP=OK/AK=1/3

=>EQ=1/3EF

=>FM=MQ=QE

giúp mình với ạ, cần gấp1) Cho tam giác ABC có trung tuyến AI. Trên AI lấy điểm G bất kì, BG cắt AC tại E, CG cắt AB tại F. Chứng minh rằng: EF // BC.2) Cho tam giác ABC có M là trung điểm của BC, điểm N nằm trên cạnh AB sao cho AN = 1/3AB, điểm Q nằm trên cạnh AC sao cho AQ = 2/3 AC, đường thẳng QN cắt đường thẳng AM và BC lần lượt tại điểm P, R.a) Tính: RB/RC,PA/PM ?b) Đường thẳng đi qua N song song với BC cắt...
Đọc tiếp

giúp mình với ạ, cần gấp

1) Cho tam giác ABC có trung tuyến AI. Trên AI lấy điểm G bất kì, BG cắt AC tại E, CG cắt AB tại F. Chứng minh rằng: EF // BC.

2) Cho tam giác ABC có M là trung điểm của BC, điểm N nằm trên cạnh AB sao cho AN = 1/3AB, điểm Q nằm trên cạnh AC sao cho AQ = 2/3 AC, đường thẳng QN cắt đường thẳng AM và BC lần lượt tại điểm P, R.

a) Tính: RB/RC,PA/PM ?

b) Đường thẳng đi qua N song song với BC cắt AC tại T. Chứng minh rằng: CN, BT cắt nhau tại trung điểm của AM.

3) Cho tam giác ABC có trung tuyến AI và trọng tâm G. Qua G dựng đường thẳng d bất kì cắt các cạnh AB, AC lần lượt tại M, N.

a) Chứng minh rằng: AB/AM + AC/AN  có giá trị không đổi khi (d) thay đổi.

b) Xác định vị trí của đường thẳng (d) để AM/AB+AN/AC đạt GTNN.

4) Cho tam giác ABC ,một đường thẳng thay đổi cắt các cạnh AB, AC tại E, F sao cho: AB/AE+AC/FA=4 . Chứng minh rằng EF luôn đi qua một điểm cố định.

5) Cho tam giác nhọn ABC và điểm D bất kì trên cạnh BC, lấy một điểm E thuộc đoạn AD, F thuộc đoạn DE. Một đường thẳng qua F song song với BC cắt AB, EB, EC, AC theo thứ tự tại M, P, Q, N. Đường thẳng MD và EB cắt nhau tại R, ND và EC cắt nhau tại S, DP và AB cắt nhau tại G, DQ và AC cắt nhau tại H. Chứng minh rằng:

a) MP/BD=NQ/DC

b) RS // BC

c) GH // RS

0
4 tháng 4 2017

Đoạn thẳng c: Đoạn thẳng [A, B] của Hình tam giác TenDaGiac1 Đoạn thẳng a: Đoạn thẳng [B, C] của Hình tam giác TenDaGiac1 Đoạn thẳng b: Đoạn thẳng [C, A] của Hình tam giác TenDaGiac1 Đoạn thẳng f: Đoạn thẳng [A, M] Đoạn thẳng j: Đoạn thẳng [D, F] Đoạn thẳng k: Đoạn thẳng [A, F] Đoạn thẳng l: Đoạn thẳng [A, K] A = (-2.34, 7.76) A = (-2.34, 7.76) A = (-2.34, 7.76) B = (-3.56, 4.64) B = (-3.56, 4.64) B = (-3.56, 4.64) C = (2.56, 4.56) C = (2.56, 4.56) C = (2.56, 4.56) Điểm M: Trung điểm của a Điểm M: Trung điểm của a Điểm M: Trung điểm của a Điểm D: Điểm trên a Điểm D: Điểm trên a Điểm D: Điểm trên a Điểm E: Giao điểm của g, c Điểm E: Giao điểm của g, c Điểm E: Giao điểm của g, c Điểm F: Giao điểm của g, h Điểm F: Giao điểm của g, h Điểm F: Giao điểm của g, h Điểm K: Giao điểm của g, i Điểm K: Giao điểm của g, i Điểm K: Giao điểm của g, i N O

a. Ta thấy \(\widehat{KEA}=\widehat{BED}\) (Đối đỉnh) ; mà \(\widehat{BED}=\widehat{BAM}\) (đồng vị) nên \(\widehat{KEA}=\widehat{BAM}\)

Xét tam giác AKE và tam giác BMA có:

\(\widehat{KEA}=\widehat{BAM}\) (cmt)

\(\widehat{KAE}=\widehat{MBA}\) (so le trong)

Vậy nên \(\Delta AKE\sim\Delta BMA\left(g-g\right)\)

b. Vì KD // AM; AK //MD nên AKDM là hình bình hành. Vậy thì AM = KD.

Do \(\Delta AKE\sim\Delta BMA\left(cma\right)\Rightarrow\frac{KE}{AM}=\frac{AE}{AB}\)

Do ED //AM nên \(\frac{AE}{AB}=\frac{MD}{MB}=\frac{DM}{MC}\)

Do AM//FD nên \(\frac{DM}{MC}=\frac{FA}{AC}\)

Do AK // DC nên \(\frac{FA}{AC}=\frac{KF}{KD}=\frac{KF}{AM}\) . Vậy nên \(\frac{KE}{AM}=\frac{KF}{AM}\Rightarrow KE=KF\) hay K là trung điểm EF.

c. Do AK //BM nên \(\frac{ON}{OD}=\frac{AN}{BD}=\frac{2}{3}\)

Do NA = NK; AK = DM; BD = BM - DM nên ta có: 

\(\frac{DM:2}{BM-DM}=\frac{2}{3}\Leftrightarrow3DM=4BM-4DM\Leftrightarrow7DM=4BM\)

hay \(\frac{DM}{BM}=\frac{4}{7}.\)

23 tháng 8 2023

chịu

23 tháng 8 2023

đọc mà rối loạn tâm chí, chi co cao thủ như các thầy cô giáo mới làm đc

 

22 tháng 12 2018

Xét △ PAC và  △ PKM,ta có:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Lại có: ∠ (APC) =  ∠ (KPM) (đối đỉnh)

Suy ra:  △ PKM đồng dạng  △ PAC(c.g.c) với tỉ số đồng dạng k = 1/2

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (1)

Vì  △ PKM đồng dạng △ PAC nên  ∠ (PKM) =  ∠ (PAC)

Suy ra: KM //AC (vì có cặp góc ở vị trí so le trong bằng nhau)

Trong  △ ABC, ta có: KM // AC

Suy ra:  △ BMK đồng dạng BAC (g.g)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (2)

Từ 1 và (2) suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vì BM = 1/2 BA nên M là trung điểm AB.

Vì BK = 1/2 BC nên K là trung điểm BC.