Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi Q là giao điểm của PF và AK ,I là giao điểm của PE và CL
Trong △ FPE ta có: PE//AK hay QM //PE
Suy ra: (định lí ta-lét) (1)
Trong △ ALO ta có:PF //CL hay FQ //LO
Suy ra: (định lí ta-lét) (2)
Trong △ ALC ta có: PF // CL
Suy ra: (định lí ta-lét) (3)
Từ (2) và (3) suy ra:
Vì LO = 1/3 CL (O giao điểm của hai đường trung tuyến) nên (4)
Từ (1) và (4) suy ra: ⇒ FM = 1/3 FE
Trong △ EPF ta có:PF // CL hay NI // PF
Suy ra: (định lí ta –lét) (5)
Trong △ CKO ta có: EI // OK
Suy ra: (định lí ta –lét) (6)
Trong △ CKA ta có:PE // AK
Suy ra: (định lí ta –lét) (7)
Từ (6) và (7) suy ra:
Vì OK = 1/3 AK (O là giao điểm của hai đường trung tuyến) nên (8)
Từ (5) và (8) suy ra: ⇒EN = 1/3 EF
Ta có: MN = EF - (EN + FM) = EF - (1/3 EF + 1/3 EF) = 1/3 EF
Vậy EN = MN = NF
Gọi H là giao của PF và AK, I là giao của PE và CN
Xét ΔFPE có PE//AK
=>HM//PE
=>FH/FB=FM/FE
Xét ΔANO có PF//CN
=>FH//NO
=>AF/AN=FH/NO
ΔALC có PF//CN
nên AF/AN=FP/CN
=>FH/NO=FP/CN
=>FH/EP=NO/CN
NO=1/3CN
nên FH/FP=1/3
=>FM/FE=1/3
=>FM=1/3FE
PF//CN
=>QI//PF
=>EI/EP=EQ/EF
EI//OK
=>CE/CK=EI/KO
PE//AK
=>CE/CK=EP/AK
=>EI/OK=EP/AK
=>EI/EP=OK/AK=1/3
=>EQ=1/3EF
=>FM=MQ=QE
a. Ta thấy \(\widehat{KEA}=\widehat{BED}\) (Đối đỉnh) ; mà \(\widehat{BED}=\widehat{BAM}\) (đồng vị) nên \(\widehat{KEA}=\widehat{BAM}\)
Xét tam giác AKE và tam giác BMA có:
\(\widehat{KEA}=\widehat{BAM}\) (cmt)
\(\widehat{KAE}=\widehat{MBA}\) (so le trong)
Vậy nên \(\Delta AKE\sim\Delta BMA\left(g-g\right)\)
b. Vì KD // AM; AK //MD nên AKDM là hình bình hành. Vậy thì AM = KD.
Do \(\Delta AKE\sim\Delta BMA\left(cma\right)\Rightarrow\frac{KE}{AM}=\frac{AE}{AB}\)
Do ED //AM nên \(\frac{AE}{AB}=\frac{MD}{MB}=\frac{DM}{MC}\)
Do AM//FD nên \(\frac{DM}{MC}=\frac{FA}{AC}\)
Do AK // DC nên \(\frac{FA}{AC}=\frac{KF}{KD}=\frac{KF}{AM}\) . Vậy nên \(\frac{KE}{AM}=\frac{KF}{AM}\Rightarrow KE=KF\) hay K là trung điểm EF.
c. Do AK //BM nên \(\frac{ON}{OD}=\frac{AN}{BD}=\frac{2}{3}\)
Do NA = NK; AK = DM; BD = BM - DM nên ta có:
\(\frac{DM:2}{BM-DM}=\frac{2}{3}\Leftrightarrow3DM=4BM-4DM\Leftrightarrow7DM=4BM\)
hay \(\frac{DM}{BM}=\frac{4}{7}.\)
đọc mà rối loạn tâm chí, chi co cao thủ như các thầy cô giáo mới làm đc
Xét △ PAC và △ PKM,ta có:
Suy ra:
Lại có: ∠ (APC) = ∠ (KPM) (đối đỉnh)
Suy ra: △ PKM đồng dạng △ PAC(c.g.c) với tỉ số đồng dạng k = 1/2
Suy ra: (1)
Vì △ PKM đồng dạng △ PAC nên ∠ (PKM) = ∠ (PAC)
Suy ra: KM //AC (vì có cặp góc ở vị trí so le trong bằng nhau)
Trong △ ABC, ta có: KM // AC
Suy ra: △ BMK đồng dạng △ BAC (g.g)
Suy ra: (2)
Từ 1 và (2) suy ra:
Vì BM = 1/2 BA nên M là trung điểm AB.
Vì BK = 1/2 BC nên K là trung điểm BC.