Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) AD = DM ( gt )
=> ∆ADM cân
=> góc DAM=góc AMD
mà góc BAM= AMD( 2 góc so le trong )
=> góc DAM=BAM
=> AM la tia phân giác góc A
+) Do AD = BC (ABCD là hình bình hành)
=> BC = MC
=> ΔCMB cân
=> góc CMB = góc CBM
mà góc ABM = góc CMB (2 góc so le trong do AB// MC)
=> góc ABM = góc CBM
=> BM là tia phân giác của góc B
b) lấy E là trung điểm của AB
ta có AE = DM ( do AB=DC)
mà AE//DM ( do AB//CD )
=> tứ giác AEDM la hbh
=> AD=EM
mà AD=1/2AB
=> EM=1/2AB
=> ∆AMB vuông tại M (ĐL trg ∆ có đường trung tuyến ứng với 1 cạnh = một nửa cạnh ấy thì ∆ dó là ∆ vuông)
=> góc AMB = 90 độ ( đpcm)
* Mình đã cm cho bạn pgiac góc B, k hiểu gì hỏi nhé
a) AD = DM ( gt )
⇒ ∆ ADM cân
⇒ \(\widehat{DAM}=\widehat{AMD}\)
mà \(\widehat{DAM}=\widehat{AMD}\) ( 2 góc so le trong )
⇒ \(\widehat{DAM}=\widehat{BAM}\)
⇒ AM la tia phân giác \(\widehat{A}\)
Do AD = BC (ABCD là hình bình hành)
⇒ BC = MC
⇒ △ CMB cân
⇒ \(\widehat{CMB}=\widehat{CBM}\)
mà \(\widehat{ABM}=\widehat{CMB}\) (2 góc so le trong do AB // MC)
⇒ \(\widehat{ABM}=\widehat{CBM}\)
⇒ BM là tia phân giác của \(\widehat{B}\)
b) Lấy E là trung điểm của AB
ta có AE = DM ( do AB = DC)
mà AE // DM ( do AB // CD )
⇒ Tứ giác AEDM là hình bình hành
⇒ AD = EM
mà AD =\(\dfrac{1}{2}\) AB
⇒ EM = \(\dfrac{1}{2}\) AB
⇒ ∆ AMB vuông tại M (vì trong tam giác có đường trung tuyến ứng với một cạnh bằng một nửa cạnh ấy thì tam giác đó là tam giác vuông)
⇒ \(\widehat{AMB}=90^0\) ( đpcm )
1: Ta có: AB=2AD
mà AB=CD
nên CD=2AD
mà \(CD=2\cdot MD\cdot MC\)
nên AD=DM=MC=BC
Xét ΔAMD có DA=DM
nên ΔAMD cân tại D
Suy ra: \(\widehat{DAM}=\widehat{DMA}\)
mà \(\widehat{DMA}=\widehat{MAB}\)
nên \(\widehat{DAM}=\widehat{BAM}\)
hay AM là tia phân giác của \(\widehat{DAB}\)
Xét ΔBCM có MC=MB
nên ΔBMC cân tại C
Suy ra: \(\widehat{CMB}=\widehat{CBM}\)
mà \(\widehat{CMB}=\widehat{ABM}\)
nên \(\widehat{CBM}=\widehat{ABM}\)
hay BM là tia phân giác của \(\widehat{ABC}\)
a) +) AD = DM ( gt )
=> ∆ADM cân
=> góc DAM=góc AMD
mà góc BAM= AMD( 2 góc so le trong )
=> góc DAM=BAM
=> AM la tia phân giác góc A
+) Do AD = BC (ABCD là hình bình hành)
=> BC = MC
=> ΔCMB cân
=> góc CMB = góc CBM
mà góc ABM = góc CMB (2 góc so le trong do AB// MC)
=> góc ABM = góc CBM
=> BM là tia phân giác của góc B
b) lấy E là trung điểm của AB
ta có AE = DM ( do AB=DC)
mà AE//DM ( do AB//CD )
=> tứ giác AEDM la hbh
=> AD=EM
mà AD=1/2AB
=> EM=1/2AB
=> ∆AMB vuông tại M (ĐL trg ∆ có đường trung tuyến ứng với 1 cạnh = một nửa cạnh ấy thì ∆ dó là ∆ vuông)
=> góc AMB = 90 độ ( đpcm)
a: Xét tứ giác ABHD có
\(\widehat{BAD}=\widehat{ADH}=\widehat{BHD}=90^0\)
=>ABHD là hình chữ nhật
Hình chữ nhật ABHD có AB=AD
nên ABHD là hình vuông
=>AB=BH=HD=DA
mà \(AB=AD=\dfrac{DC}{2}\)
nên \(BH=DH=\dfrac{DC}{2}\)
DH=DC/2
=>H là trung điểm của DC
Xét ΔDBC có
BH là đường cao
BH là đường trung tuyến
Do đó: ΔDBC cân tại B(2)
Xét ΔBDC có
BH là đường trung tuyến
\(BH=\dfrac{DC}{2}\)
Do đó: ΔBDC vuông tại B(1)
Từ (1) và (2) suy ra ΔBDC vuông cân tại B
b: AB=HD
HD=HC
Do đó: AB=HC
Xét tứ giác ABCH có
AB//CH
AB=CH
Do đó: ABCH là hình bình hành
=>AC cắt BH tại trung điểm của mỗi đường
mà M là trung điểm của BH
nên M là trung điểm của AC
c: \(\widehat{ADI}+\widehat{IAD}=90^0\)(ΔADI vuông tại I)
\(\widehat{ACD}+\widehat{IAD}=90^0\)(ΔADC vuông tại D)
Do đó: \(\widehat{ADI}=\widehat{ACD}\)
mà \(\widehat{ACD}=\widehat{BAC}\)(hai góc so le trong, AB//CD)
nên \(\widehat{BAC}=\widehat{ADI}\)
a) vì AB//DC vì ABCD là hbh
=> góc BAM = góc DMA (hai góc so le trong) (1)
mặt khác: AD = DM = 1/2 DC nên tam giác ADM cân
=> góc DAM = góc AMD (2)
Từ 1 và 2 suy ra góc DAM = góc MAB
Hay AM là tia phân giác của góc A
CHứng minh tương tự cho BM là tia phân giác góc B
b) Kẻ MN // Với AD và BC
ta dễ dàng nhận thấy ANMD và MNBC là các hình bình hành
nên ta có NA = NB = MC = MD = 1/2 DC
Xét tam giác AMB có MN là đường trung tuyến
Mặt khác MN = 1/2 BC nên tam giác AMB là tam giác vuông tại M
(Vì trong một tam giác vuông đường trung tuyến thuộc cạnh huyền thì bằng nửa cạnh ấy và ngược lại)