Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-\frac{3}{8}x^2z\cdot\frac{2}{3}xy^2z^2\cdot\frac{4}{5}x^3y=\left(-\frac{3}{8}\cdot\frac{2}{3}\cdot\frac{4}{5}\right)\left(x^2\cdot x\cdot x^3\right)\left(y^2\cdot y\right)\left(z\cdot z^2\right)=-\frac{1}{5}x^6y^3z^3\)
Bậc của đơn thức là 12
a) Ta có: \(\frac{-1}{5}x^3y^2\cdot\frac{5}{4}xy^3\)
\(=\frac{-1}{4}x^4y^5\)
-Phần hệ số của đơn thức \(\frac{-1}{4}x^4y^5\) là \(-\frac{1}{4}\)
-Phần biến số của đơn thức \(\frac{-1}{4}x^4y^5\) là x4 và y5
-Phần bậc của đơn thức \(\frac{-1}{4}x^4y^5\) là 9
b) Ta có: \(-3xy^4\cdot\left(\frac{-1}{3}x^2y^2\right)\)
\(=x^3y^6\)
-Phần hệ số của đơn thức \(x^3y^6\) là 1
-Phần biến số của đơn thức \(x^3y^6\) là x3 và y6
-Phần bậc của đơn thức \(x^3y^6\) là 9
Mik viết lại đề bài !
Thu gọn đa thức :
\(x^3y^4-x^2y^2+y^6-5x^3y^4-6x^2y^2+3y^6-5x^2y^2+4y^6\\ =x^2y^4\left(1-5\right)-x^2y^2\left(1+6+5\right)+y^6\left(1+3+4\right)\\ =-4x^2y^4-12x^2y^2+8y^6\\ =4y^2\left(-x^2y^2-3x^2+2y^4\right)\)
1 ) a) \(4x^2-x^2+8x^2\)
\(=\left(4+8\right).x^2+x^2-x^2\)
\(=12.x^3\)
b) \(\frac{1}{2}.x^2.y^2-\frac{3}{4}.x^2.y^2+x^2.y^2\)
\(\left(\frac{1}{2}-\frac{3}{4}\right).x^2.x^2.x^2.+y^2+y^2+y^2\)
\(=-\frac{1}{4}.x^6+y^6\)
c) \(3y-7y+4y-6y\)
\(=\left(3-7+4-6\right).y.y.y.y\)
\(=-6.y^4\)
2)
\(\left(-\frac{2}{3}.y^3\right)+3y^2-\frac{1}{2}.y^3-y^2\)
\(\left(-\frac{2}{3}+3-\frac{1}{2}\right).y^3.y^3-y\)
\(=\frac{25}{6}.y^5\)
b) \(5x^3-3x^2+x-x^3-4x^2-x\)
\(=\left(5-3-4\right).\left(x^3.x^2+x-x^3-x^2-x\right)\)
\(=-2.0=0\)
hông chắc
3)a) \(5xy^2.\frac{1}{2}x^2y^2x\)
\(\left(5.\frac{1}{2}\right).x^2.x^2.x.y^2.y^2\)
\(=\frac{5}{2}.x^5.y^4\)
b) Tổng các bậc của đơn thức là
5+4 = 9
Hệ số của đơn thức là \(\frac{5}{2}\)
Phần biến là x;y
Thay x=1;y=-1 vào đơn thức
\(\frac{5}{2}.1^5.\left(-1\right)^4\)
\(\frac{5}{2}.1.\left(-1\right)\)
\(\frac{5}{2}.\left(-1\right)=-\frac{5}{2}\)
Vậy ....
chắc không đúng đâu uwu
a: \(=2x^2y^2\cdot\dfrac{1}{4}xy^3\cdot9x^2y^2=\dfrac{9}{2}x^5y^7\)
Bậc là 12
Hệ số là 9/2
c: \(=3x^2y^2\cdot\dfrac{1}{9}x^3y\cdot9x^2y^2=3x^7y^5\)
Bậc là 3
Hệ số là 12
d: \(=16x^6y^2\cdot x^5\cdot y^2\cdot\dfrac{1}{8}y^5z=2x^{11}y^9z\)
Bậc là 21
Hệ số là 2
\(3x^2y^3-A-5x^3y^2+B=8x^2y^3-4x^3y^2\)
\(\Leftrightarrow-A+B=5x^2y^3+x^3y^2\)
\(-6x^2y^3+C-3x^3y^2-D=2x^2y^3-7x^3y^2\)
\(\Leftrightarrow C-D=8x^2y^3-4x^3y^2\)
Do \(A\) và \(C\) đồng dạng nên \(A=-5x^2y^3,C=8x^2y^3\) suy ra \(B=x^3y^2,D=4x^3y^2\) hoặc \(A=-x^3y^2,C=-4x^3y^2\) suy ra \(B=5x^2y^3,D=-8x^2y^3\).
\(A=-\frac{3}{8}x^2y.\frac{2}{3}xy^2.z^2.\frac{4}{5}x^3y\)
\(=\left(-\frac{3}{8}.\frac{2}{3}.\frac{4}{5}\right)\left(x^2xx^3\right)\left(yy^2y\right)z^2\)
\(=-\frac{1}{5}x^6y^4z^2\)