Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
1) Ta có\(\frac{x+2}{5}=\frac{1}{x-2}\)
=> (x + 2)(x - 2) = 5
=> x2 + 2x - 2x - 4 = 5
=> x2 - 4 = 5
=> x2 = 9
=> \(\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
2) \(\frac{3}{x-4}=\frac{x+4}{3}\)
=> (x - 4)(x + 4) = 9
=> x2 + 4x - 4x - 16 = 9
=> x2 - 16 = 9
=> x2 = 25
=> \(\orbr{\begin{cases}x=5\\x=-5\end{cases}}\)
a, \(\frac{x+2}{5}=\frac{1}{x-2}ĐK:x\ne2\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(x-2\right)}{5\left(x-2\right)}=\frac{5}{5\left(x-2\right)}\Leftrightarrow\left(x+2\right)\left(x-2\right)=5\)
\(\Leftrightarrow x^2-2x+2x-4=5\Leftrightarrow x^2=9\Leftrightarrow x\pm3\)
b, \(\frac{3}{x-4}=\frac{x+4}{3}ĐK:x\ne4\)
\(\Leftrightarrow\frac{9}{\left(x-4\right)3}=\frac{\left(x+4\right)\left(x-4\right)}{3\left(x-4\right)}\Leftrightarrow9=x^2-4x+4x-16\)
\(\Leftrightarrow x^2-16=9\Leftrightarrow x^2=25\Leftrightarrow x=\pm5\)
c, \(\frac{x+2}{x+6}=\frac{3}{x}=1ĐK:x\ne0;-6\)
Xét : \(\frac{x+2}{x+6}=1\Leftrightarrow x+2=x+6\Leftrightarrow-4\ne0\)
Xét : \(\frac{3}{x}=1\Leftrightarrow3=x\)
a ) x + 5/12 = -2/3
=> x = -2/3 - 5/12
=> x = -8/12 - 5/12
=> x = -13/12
b ) 4/5 + 3/4 : x = 1/2
=> 3/4 : x = 1/2 - 4/5
=> 3/4 : x = 5/10 - 8/10
=> 3/4 : x = -3/10
=> x = 3/4 : -3/10
=> x = -5/2
c ) x/2 + x/3 = 1/4
=> 3x/6 + 2x/6 = 1/4
=> ( 3x + 2x )/6 = 1/4
=> 5x/6 = 1/4
=> 20x/24 = 6/24
=> 20x = 6
=> x = 6 : 20
=> x = 0 , 3
Chúc bạn học giỏi !!!
\(\frac{3}{4}-|x+3|+|x-2|=1\) \(1\)
<=> \(|x+3|+|x-2|=\frac{-1}{4}\) \(\left(1\right)\)
nếu \(x< -3\) thì
\(\left(1\right)\) <=> \(-x-3-x+2=\frac{-1}{4}\)
<=> \(-2x-1=\frac{-1}{4}\)
<=> \(x=\frac{-3}{8}\) ( k tm khoảng đang xét )
nếu \(-3\le x\le2\) thì
\(\left(1\right)\) <=> \(x+3-x+2=\frac{-1}{4}\)
<=> \(0x=\frac{-21}{4}\)
=> pt ( 1) vô nghiệm
nếu\(x>2\) thì
\(\left(1\right)\) <=> \(x+3+x-2=\frac{-1}{4}\)
<=> \(x=\frac{-5}{8}\) ( k tm khoảng đang xét )
vậy phương trình vô nghiệm
câu kia làm tương tự nhé
xét 3 trường hợp là \(x< 2;2\le x\le3;x>3\)
chúc bn học tốt
Ta có :
\(\left|x-1\right|=\left|1-x\right|\)
\(\Leftrightarrow\left|x-1\right|+\left|x+3\right|=\left|1-x\right|+\left|x+3\right|\ge\left|1-x+x+3\right|\)
\(\Leftrightarrow\left|x-1\right|+\left|x+3\right|\ge\left|4\right|\)
\(\Leftrightarrow\left|x-1\right|+\left|x+3\right|\ge4\)
Dấu "=" xảy ra \(\Leftrightarrow\left(1-x\right)\left(x+3\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}1-x\ge0\\x+3\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}1-x\le0\\x+3\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}1\ge x\\x\ge-3\end{matrix}\right.\\\left\{{}\begin{matrix}1\le x\\x\le-3\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}1\ge x\ge-3\\x\in\varnothing\end{matrix}\right.\)
Vậy..