Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(x\ge-\frac{1}{2}\)
2f(x) = \(2\sqrt{\left(2x+1\right)\left(x+2\right)}+4\sqrt{x+3}-4x\)
\(=-\left(2x+1\right)+2\sqrt{\left(2x+1\right)\left(x+2\right)}-\left(x+2\right)-\left(x+3\right)+4\sqrt{x+3}-4+10\)
\(=-\left(\sqrt{2x+1}-\sqrt{x+2}\right)^2-\left(\sqrt{x+3}-2\right)^2+10\le10\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x+1=x+2\\x+3=4\end{cases}}\Leftrightarrow x=1\)
=> min 2f(x) = 10 tại x = 1
=> min f(x) = 5 tại x = 1
chắc gõ dấu + nhưng quên ấn Shift thành dấu = r`
\(\sqrt{4x^2+4x+1}+\sqrt{25x^2+10x+1}\)
\(=\sqrt{\left(2x+1\right)^2}+\sqrt{\left(5x+1\right)^2}\)
\(=\left|2x+1\right|+\left|5x+1\right|\ge\frac{3}{5}\)
Dấu = khi \(x=-\frac{1}{5}\)
vào đây xem câu TL bạn nhé
https://www.youtube.com/watch?v=fvGaHwKrbUc
Ta chứng minh được:
\(0\le x:y\le1\)
\(\Rightarrow x\ge x^2;y\ge y^2;xy\ge0\)
\(P^2=8+5\left(x+y\right)+2\sqrt{16+20\left(x+y\right)+25xy}\)
\(P^2\ge8+5\left(x^2+y^2\right)+2\sqrt{16+20\left(x^2+y^2\right)}\)
\(P^2\ge8+5+2\sqrt{16+20}=25\)
\(\Rightarrow P\ge5\)
Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}x=0;y=1\\x=1;y=0\end{cases}}\)
\(P=\frac{1}{\sqrt{x}+1}+\frac{10}{2\sqrt{x}+1}-\frac{5}{2x+3\sqrt{x}+1}\)
\(=\frac{1}{\sqrt{x}+1}+\frac{10}{2\sqrt{x}+1}-\frac{5}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{2\sqrt{x}+1+10\left(\sqrt{x}+1\right)-5}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{2\sqrt{x}+1+10\sqrt{x}+10-5}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{6}{\sqrt{x}+1}\)
b) Để P nguyên tố thì \(\frac{6}{\sqrt{x}+1}\) nguyên tố
Để \(P\inℕ^∗\) thì \(\sqrt{x}+1\inƯ\left(6\right)\)
Mà P nguyên tố \(\Rightarrow\frac{6}{\sqrt{x}+1}=\left\{2;3\right\}\Rightarrow\sqrt{x}+1=\left\{2;3\right\}\)
Với \(\sqrt{x}+1=2\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)
Với \(\sqrt{x}+1=3\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)
Vậy ...........
\(a=\sqrt{25x^2-10x+1+16}=\sqrt{\left(5x-1\right)^2+16}\ge\sqrt{16}=4\)
\(a_{min}=4\) khi \(5x-1=0\Leftrightarrow x=\frac{1}{5}\)
\(b=\sqrt{x^2-10x+25+5}=\sqrt{\left(x-5\right)^2+5}\ge\sqrt{5}\)
\(b_{min}=\sqrt{5}\) khi \(x=5\)
\(c=\sqrt{-16x^2-8x-1+4}=\sqrt{4-\left(4x+1\right)^2}\le\sqrt{4}=2\)
\(c_{max}=2\) khi \(x=-\frac{1}{4}\)