Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(E=\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{2015}{3^{2015}}-\dfrac{2016}{3^{2016}}\\ 3E=1-\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{2015}{3^{2014}}-\dfrac{2016}{3^{2015}}\\ 3E+E=\left(1-\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{2015}{3^{2014}}-\dfrac{2016}{3^{2015}}\right)+\left(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{2015}{3^{2015}}-\dfrac{2016}{3^{2016}}\right)\\ 4E=1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{2014}}-\dfrac{1}{3^{2015}}-\dfrac{2016}{3^{2016}}\\ 12E=3-1+\dfrac{1}{3}-\dfrac{1}{3^2}+...+\dfrac{1}{3^{2013}}-\dfrac{1}{3^{2014}}-\dfrac{6048}{3^{2016}}\\ 4E+12E=\left(3-1+\dfrac{1}{3}-\dfrac{1}{3^2}+...+\dfrac{1}{3^{2013}}-\dfrac{1}{3^{2014}}-\dfrac{2016}{3^{2015}}\right)+\left(1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{2014}}-\dfrac{1}{3^{2015}}-\dfrac{2016}{3^{2016}}\right)\\ 16E=3-\dfrac{2017}{3^{2015}}-\dfrac{2016}{3^{2016}}\\ 16E=3-\left(\dfrac{2017}{3^{2015}}+\dfrac{672}{3^{2015}}\right)\\ 16E=3-\dfrac{2689}{3^{2015}}< 3\\ \Rightarrow E< \dfrac{3}{16}\)
a. \(\left[\left(-2\right)^5.2014-4^2.2015\right]-\left(-2015^0+3^2-2^3\right)\)
\(=-64448-32240+1-9+8=-96688\)
Tớ lm lại nhé:
SBC = 9-1/2-1/3-1/4-...-1/10
=1+1+...+1(9 số 1) -1/2-1/3-1/4-1/5-...-1/10.
=(1-1/2)+(1-1/3)+...+(1-1/10)
=1/2+2/3+...+9/10= SC
=> phép chia có thương là 1(vì SBC=SC)
ta gọi A= 1+3+3^2+3^3+3^4..............+3^2015 (1)
vậy 2A=3+32+33+..................+ 32015+32016 (2)
Ta lấy (2) trừ (1) theo vế
2A-A=(3+32+33+..................+32016)-(1+3+3^2+3^3+3^4..............+3^2015)
A= 32016-1