Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(1\dfrac{4}{23}+\dfrac{5}{21}-\dfrac{4}{23}+0,5+\dfrac{16}{21}=\left(1\dfrac{4}{23}-\dfrac{4}{23}\right)+\left(\dfrac{5}{21}+\dfrac{16}{21}\right)+0,5=1+1+0,5=2,5\)b)
\(\dfrac{3}{7}.19\dfrac{1}{3}-\dfrac{7}{7}.33\dfrac{1}{3}=\dfrac{7}{3}\left(19\dfrac{1}{3}-33\dfrac{1}{3}\right)=\dfrac{7}{3}.\left(-14\right)=-\dfrac{1}{6}\)
c,
\(\left(15\dfrac{1}{4}+2010\right):\left(-\dfrac{5}{7}\right)-\left(25\dfrac{1}{4}+2016\right):\left(\dfrac{-5}{7}\right)=\left(15\dfrac{1}{4}+2010\right):\left(-\dfrac{7}{5}\right)-\left(25\dfrac{1}{4}+2016\right):\left(\dfrac{-7}{5}\right)\)
\(\left(-\dfrac{7}{5}\right)\left(15\dfrac{1}{4}+2010-25\dfrac{1}{4}-2016\right)=\left(-\dfrac{7}{5}\right)\left(-10-6\right)=22,4\)
d,
\(\left(2017-\dfrac{3}{7}+\dfrac{9}{11}\right)-\left(2016-\dfrac{3}{7}+\dfrac{8}{17}\right)-\left(2015+\dfrac{9}{11}-\dfrac{8}{17}\right)=2017-\dfrac{3}{7}+\dfrac{9}{11}-2016+\dfrac{3}{7}-\dfrac{8}{17}-2015-\dfrac{9}{11}+\dfrac{8}{17}\)\(\left(2017-2016-2015\right)+\left(-\dfrac{3}{7}+\dfrac{3}{7}\right)+\left(\dfrac{9}{11}-\dfrac{9}{11}\right)+\left(-\dfrac{8}{17}+\dfrac{8}{17}\right)=-2014\)
Bạn ơi cho mình hỏi tại sao đề bài câu c là -5/7 mà bn lm -7/5
Câu 2:
\(B=\dfrac{5^{21}\cdot\left(2\cdot5-9\right)}{5^{20}}\cdot\dfrac{7^{15}\left(7+3\right)}{15\cdot7^{15}-95\cdot7^{14}}\)
\(=\dfrac{5\cdot1}{1}\cdot\dfrac{7^{15}\cdot10}{7^{14}\cdot\left(15\cdot7-95\right)}\)
\(=5\cdot\dfrac{7\cdot10}{105-95}=5\cdot7=35\)
a: \(=\dfrac{3}{4}-\dfrac{5}{6}+\dfrac{3}{2}=\dfrac{9-10+18}{12}=\dfrac{17}{12}\)
b: \(=\left(\dfrac{1}{9}+\dfrac{6}{9}\right)^2-\dfrac{1}{3}=\dfrac{49}{81}-\dfrac{27}{81}=\dfrac{22}{81}\)
c; \(=\dfrac{5}{11}\left(-\dfrac{3}{7}-\dfrac{5}{7}\right)+\dfrac{-8}{7}\cdot\dfrac{6}{11}=\dfrac{-8}{7}\left(\dfrac{5}{11}+\dfrac{6}{11}\right)=-\dfrac{8}{7}\)
d: \(=\dfrac{2^{26}}{2^{15}\cdot2^{12}}=\dfrac{1}{2}\)
a: \(=\left(1+\dfrac{4}{23}-\dfrac{4}{23}\right)+\left(\dfrac{5}{21}+\dfrac{16}{21}\right)+\dfrac{1}{2}\)
\(=1+1+\dfrac{1}{2}=2+\dfrac{1}{2}=\dfrac{5}{2}\)
b: \(=\left(\dfrac{1}{25}+\dfrac{5}{25}+\dfrac{25}{25}\right):\left(\dfrac{1}{25}-\dfrac{5}{25}-\dfrac{25}{25}\right)\)
\(=\dfrac{31}{25}:\dfrac{-29}{25}=\dfrac{-31}{29}\)
c: \(=\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{\dfrac{4}{9}-\dfrac{4}{7}-\dfrac{4}{11}}+\dfrac{\dfrac{3}{5}-\dfrac{3}{25}-\dfrac{3}{125}-\dfrac{3}{625}}{\dfrac{4}{5}-\dfrac{4}{25}-\dfrac{4}{125}-\dfrac{4}{625}}\)
=1/4+3/4
=1
f, \(\dfrac{2^9.4^{10}}{8^8}=\dfrac{2^9.\left(2^2\right)^{10}}{\left(2^3\right)^8}=\dfrac{2^9.2^{20}}{2^{24}}=\dfrac{2^{29}}{2^{24}}=2^5=32\)
a: \(=\left(\dfrac{1}{3}-\dfrac{4}{3}\right)+\dfrac{14}{25}+\dfrac{11}{25}+\dfrac{2}{7}=\dfrac{2}{7}\)
b: \(=\dfrac{3}{7}-\dfrac{5}{2}-\dfrac{3}{5}+\dfrac{4}{7}+\dfrac{3}{2}-\dfrac{2}{5}=1-1-1=-1\)
c: \(=\dfrac{4}{25}+\dfrac{7}{5}\cdot\dfrac{5}{2}-2=\dfrac{4}{25}+\dfrac{7}{2}-2=\dfrac{83}{50}\)
\(B=\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{1}{16}\right)...\left(1-\dfrac{1}{81}\right)\left(1-\dfrac{1}{100}\right)\)
\(=\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}...\dfrac{99}{100}\)
\(=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}...\dfrac{9.11}{10.10}=\left(\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{9}{10}\right).\left(\dfrac{3}{2}.\dfrac{4}{3}...\dfrac{11}{10}\right)=\dfrac{1}{10}.\dfrac{11}{2}=\dfrac{11}{20}>\dfrac{11}{21}\)
\(B=\left(1-\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1+\dfrac{1}{3}\right)...\left(1-\dfrac{1}{9}\right)\left(1+\dfrac{1}{9}\right)\left(1-\dfrac{1}{10}\right)\left(1+\dfrac{1}{10}\right)\\ B=\left(\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{8}{9}\cdot\dfrac{9}{10}\right)\left(\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot...\cdot\dfrac{10}{9}\cdot\dfrac{11}{10}\right)\\ B=\dfrac{1}{10}\cdot\dfrac{11}{2}=\dfrac{11}{20}>\dfrac{11}{21}\)
o: \(\dfrac{\left(-1\right)^6\cdot3^5\cdot4^3}{9^2\cdot2^5}=\dfrac{3^5\cdot2^6}{2^5\cdot3^4}=\dfrac{3^5}{3^4}\cdot\dfrac{2^6}{2^5}=3\cdot2=6\)
s: \(\dfrac{\dfrac{2}{7}+\dfrac{2}{5}+\dfrac{2}{17}-\dfrac{2}{25}}{\dfrac{3}{14}+\dfrac{3}{10}+\dfrac{3}{34}-\dfrac{3}{50}}\)
\(=\dfrac{2\left(\dfrac{1}{7}+\dfrac{1}{5}+\dfrac{1}{17}-\dfrac{1}{25}\right)}{\dfrac{3}{2}\left(\dfrac{1}{7}+\dfrac{1}{5}+\dfrac{1}{17}-\dfrac{1}{25}\right)}\)
\(=2:\dfrac{3}{2}=\dfrac{4}{3}\)
t: \(\sqrt{\dfrac{4}{9}}-\dfrac{1}{2}:\left|-\dfrac{2}{3}\right|\)
\(=\dfrac{2}{3}-\dfrac{1}{2}:\dfrac{2}{3}\)
\(=\dfrac{2}{3}-\dfrac{3}{4}=\dfrac{8-9}{12}=-\dfrac{1}{12}\)
\(E=\dfrac{\left(\dfrac{53}{4}-\dfrac{59}{27}-\dfrac{65}{6}\right).\dfrac{5751}{25}+\dfrac{187}{4}}{\left(\dfrac{10}{7}+\dfrac{10}{3}\right):\left(\dfrac{37}{3}-\dfrac{100}{7}\right)}\)
\(=\dfrac{\dfrac{25}{108}.\dfrac{5751}{25}+\dfrac{187}{4}}{\dfrac{100}{21}:\left(\dfrac{-44}{21}\right)}\)
\(=\dfrac{53,25+\dfrac{187}{4}}{\dfrac{-25}{11}}\)
\(=\dfrac{100}{\dfrac{-25}{11}}\)
\(=-44\)
\(17^{14}và31^{11}\)
\(31^{11}< 32^{11}=\left(2^5\right)^{11}=2^{55}\)
=> \(31^{11}< 2^{55}\)
\(17^{14}>16^{14}=\left(2^4\right)^{14}=2^{56}\)
=> \(17^{14}>2^{56}\)
mà \(2^{55}< 2^{56}\)
=> \(31^{11}< 17^{14}\)
\(2^{67}và5^{21}\)
\(2^{67}=\left(2^3\right)^{22}=8^{22}\)
Vì 8 > 5 mà 22 > 21 => \(8^{22}>5^{21}\)
=> \(2^{67}>5^{21}\)
Bạn giúp mk câu a nữa đi