Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác AMB và tam giác DMC có:
BM = CM (gt)
AM =DM (gt)
\(\widehat{AMB}=\widehat{DMC}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)
b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)
Chúng lại ở vị trí so le trong nên AB //CD.
c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.
Suy ra MA = ME
Lại có MA = MD nên ME = MD.
d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.
Suy ra ED // BC
Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.
Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)
câu a :
xét ΔAMB và ΔDMC, ta có :
MB = MC (vì M là trung điểm của BC)
\(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh)
MA = MD (giả thiết)
\(\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\)
câu b :
\(vì\) \(\Delta AMB=\Delta DMC\) \(nên\) \(\Rightarrow\widehat{ABM}=\widehat{DCM}\) (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong nên => AB // DC
câu a :
xét \(\Delta ADM\) và \(\Delta DMC\), ta có :
\(MB=MC\) (vì M là trung điểm của cạnh BC)
\(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh)
\(MA=MD\) (giả thiết)
\(\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\)
câu b :
vì \(\Delta AMB=\Delta DMC\) nên \(\Rightarrow\widehat{ABM}=\widehat{DCM}\) (2 góc tương ứng). Mà 2 góc này ở vị trí soletrong nên AB // DC
a) Xét \(\Delta AMB\)và \(\Delta DMC\)có:
AM = MD (gt)
\(\widehat{AMB}=\widehat{DMC}\)(2 góc đối đỉnh)
MB = MC (M là trung điểm của BC)
\(\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\)
b) Ta có: \(\Delta AMB=\Delta DMC\)(theo a)
\(\Rightarrow\widehat{BAM}=\widehat{CDM}\)(2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
\(\Rightarrow AB//CD\)
c) Xét \(\Delta AMB\)và \(\Delta AMC\)có:
AB = AC (gt)
AM là cạnh chung
MB = MC (M là trung điểm của BC)
\(\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}\)(2 góc tương ứng)
Mà \(\widehat{AMB}+\widehat{AMC}=180^o\)(2 góc kề bù)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\frac{180^o}{2}=90^o\)
\(\Rightarrow AM\perp BC\)
d) Mk ko hiểu đề bài cho lắm!!!!!
a) Sửa đề: ΔAMB=ΔDMC
Xét ΔAMB và ΔDMC có
MA=MD(gt)
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔAMB=ΔDMC(c-g-c)
Ôi xin lỗi nhé,nhưng mình không hiểu cái đề bài cho lắm!
a) Xét ΔAMB và ΔDMC có:
\(AM=CM\) (gt)
\(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh)
\(BM=CM\) (M là trung điểm của BC)
\(\Rightarrow\text{Δ}AMB=\text{Δ}DMC\left(c.g.c\right)\)
b) Ta có: \(\text{Δ}AMB=\text{Δ}DMC\left(cmt\right)\)
\(\Rightarrow AB=DC\) (2 cạnh t.ứng)
c) Ta có: \(\text{Δ}AMB=\text{Δ}DMC\left(cmt\right)\)
\(\Rightarrow\widehat{MAB}=\widehat{MDC}\) (hai góc t.ứng)
Mà hai góc này ở vị trí so le trong
\(\Rightarrow AB//CD\)