K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 1 2022

Xét trên \(\left[-1;2\right]\Rightarrow y=x^2-2x-8\) có \(-\dfrac{b}{2a}=1\)

\(y\left(-1\right)=-5;y\left(1\right)=-9;y\left(2\right)=-8\)

Xét trên \((2;4]\Rightarrow y=2x-12\)

\(y\left(4\right)=-4\)

So sánh các giá trị trên, ta được \(M=-4;m=-9\)

\(\Rightarrow M+m=-13\)

5 tháng 1 2022

Cho em hỏi tại sao khi xét (2;4] lại ko lấy số khác mà lại lấy số 4 v ạ?
 

23 tháng 1 2017

Đáp án A

3 tháng 11 2023

A là đáp án đúng!

7 tháng 2 2019

Đáp án A

loading...  loading...  

9 tháng 11 2023

Mấy cái bước suy ra ≥;≤ là có công thức hay là định lý gì không ạ ?

3 tháng 1 2021

Đặt y= f(x) = \(x^2-2\left(m+\dfrac{1}{m}\right)x+m\)

Hoành độ đỉnh của đồ thị hàm số x=\(m+\dfrac{1}{m}\ge2\) (BĐT co-si)

vì hệ số a =1>0 nên hàm số nghịch biến trên \(\left(-\infty;m+\dfrac{1}{m}\right)\)

Suy ra, hàm số nghịch biến trên \(\left[-1;1\right]\)

=> y1 = f(-1) = \(3m+\dfrac{2}{m}+1\)

y2 = f(1)=\(1-m-\dfrac{2}{m}\)

theo đề bài ta có : y1-y2=8 <=> \(3m+\dfrac{2}{m}+1-1+m+\dfrac{2}{m}=8\left(m>0\right)\)

<=> \(m^2-2m+1=0\)

<=> m=1

3 tháng 1 2021

hệ số a = 1>0 tui tưởng nó nên làm hàm đồng biến chứ :D