K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 5 2021

Lời giải:

a) TXĐ: $x\in [-2;2]$

$y'=\frac{-x}{\sqrt{4-x^2}}=0\Leftrightarrow x=0$

Hàm số có điểm tới hạn $x=0$

Vẽ bảng biến thiên ta thu được hàm số đồng biến trên $(-2;0)$ và nghịch biến trên $(0;2)$

b) TXĐ: $x\in (-\infty;2]\cup [3;+\infty)$

$y'=\frac{2x-5}{2\sqrt{x^2-5x+6}}=0\Leftrightarrow x=\frac{5}{2}$ (loại vì không thuộc TXĐ)

Vẽ bảng biến thiên với các mốc $-\infty; 2;3;+\infty$ ta thấy hàm số đồng biến $(3;+\infty)$ và nghịch biến trên $(-\infty;2)$

NV
9 tháng 9 2021

ĐKXĐ: \(x\in\left[-2;2\right]\)

\(y'=\dfrac{-2x}{2\sqrt{4-x^2}}=\dfrac{-x}{\sqrt{4-x^2}}=0\Rightarrow x=0\)

Dấu của y':

undefined

Hàm đồng biến trên \(\left(-2;0\right)\) và nghịch biến trên \(\left(0;2\right)\)

NV
4 tháng 9 2020

a/ ĐKXĐ: \(x\ge-4\)

\(y'=\sqrt{x+4}+\frac{x+1}{2\sqrt{x+4}}=\frac{3\left(x+3\right)}{2\sqrt{x+4}}=0\Rightarrow x=-3\)

Hàm nghịch biến trên \([-4;-3)\) và đồng biến trên \(\left(-3;+\infty\right)\)

b/ ĐKXĐ: \(x\ge0\)

\(y'=\frac{1-x}{2\left(x+1\right)^2\sqrt{x}}=0\Rightarrow x=1\)

Hàm đồng biến trên \([0;1)\) và nghịch biến trên \(\left(1;+\infty\right)\)

AH
Akai Haruma
Giáo viên
16 tháng 5 2021

1. TXĐ: $x\in [1;2]$
Ta có: 

$y'=\frac{3-2x}{2\sqrt{-x^2+3x-2}}=0\Leftrightarrow x=\frac{3}{2}$

Vậy hàm số có điểm tới hạn $x=\frac{3}{2}$

Vẽ BBT với các mốc $x=1; x=\frac{3}{2}; x=2$ ta thấy hàm số đồng biến trên $(1;\frac{3}{2})$ và nghịch biến trên $(\frac{3}{2};2)$

 

AH
Akai Haruma
Giáo viên
16 tháng 5 2021

2. 

TXĐ: $x\in\mathbb{R}$

$y=\sqrt{x^2+x+1}\Rightarrow y'=\frac{2x+1}{2\sqrt{x^2+x+1}}=0$

$\Leftrightarrow x=\frac{-1}{2}$

Vẽ BBT với các mốc $-\infty; \frac{-1}{2};+\infty$ ta thấy hàm số đồng biến trên $(\frac{-1}{2};+\infty)$ và nghịch biến trên $(-\infty; \frac{-1}{2})$

NV
10 tháng 9 2021

a.

\(y'=-\dfrac{3}{2}x^3+\dfrac{6}{5}x^2-x+5\)

b.

\(y'=\dfrac{\left(x^2+4x+5\right)'}{2\sqrt{x^2+4x+5}}=\dfrac{2x+4}{2\sqrt{x^2+4x+5}}=\dfrac{x+2}{\sqrt{x^2+4x+5}}\)

c.

\(y=\left(3x-2\right)^{\dfrac{1}{3}}\Rightarrow y'=\dfrac{1}{3}\left(3x-2\right)^{-\dfrac{2}{3}}=\dfrac{1}{3\sqrt[3]{\left(3x-2\right)^2}}\)

d.

\(y'=2\sqrt{x+2}+\dfrac{2x-1}{2\sqrt{x+2}}=\dfrac{6x+7}{2\sqrt{x+2}}\)

e.

\(y'=3sin^2\left(\dfrac{\pi}{3}-5x\right).\left[sin\left(\dfrac{\pi}{3}-5x\right)\right]'=-15sin^2\left(\dfrac{\pi}{3}-5x\right).cos\left(\dfrac{\pi}{3}-5x\right)\)

g.

\(y'=4cot^3\left(\dfrac{\pi}{6}-3x\right)\left[cot\left(\dfrac{\pi}{3}-3x\right)\right]'=12cot^3\left(\dfrac{\pi}{6}-3x\right).\dfrac{1}{sin^2\left(\dfrac{\pi}{3}-3x\right)}\)