K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 2: 

a) Để đồ thị hàm số \(y=\left(m+1\right)x^2\) đi qua điểm A(1;2) thì

Thay x=1 và y=2 vào hàm số \(y=\left(m+1\right)x^2\), ta được:

m+1=2

hay m=1

Vậy: m=1

16 tháng 11 2021

Vì hàm số này đồng biến khi x>0 nên nếu x trong khoảng (0;1) thì hàm số đồng biến

a) Vì \(3-2\sqrt{2}>0\) nên hàm số đồng biến

b) Thay \(x=3+2\sqrt{2}\) vào hàm số, ta được:

\(y=\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right)+\sqrt{2}-1\)

\(=9-8+\sqrt{2}-1\)

\(=\sqrt{2}\)

22 tháng 7 2021

a) `a=3-2\sqrt2>0 =>` Hàm số đồng biến.

b) `y=(3-2\sqrt2)(3+2\sqrt2)+\sqrt2-1=3^2-(2\sqrt2)^2+\sqrt2-1=\sqrt2`

`=> y=\sqrt2` khi `x=3+2\sqrt2`

11 tháng 8 2017

a) Sau khi tính giá trị của mỗi giá trị theo các giá trị của x đã cho ta được bảng sau:


b) Nhận xét: Cùng một giá trị của biến x, giá trị của hàm số y = 0,5x + 2 luôn luôn lớn hơn giá trị tương ứng của hàm số y = 0,5x là 2 đơn vị.

13 tháng 4 2017

vì căn 5 -2>0 => hàm số nghịch biến khi x<0, đồng biến khi x>0

15 tháng 4 2017

vì căn5 - 2 >0 nên hàm số đồng biến khi x>0, nghịch biến khi x<0

24 tháng 3 2017

Hàm số y = f(x) = -1,5 x 2  có hệ số a = -1,5 < 0 nên hàm số đồng biến khi x < 0, nghịch biến khi x > 0.

2 tháng 3 2019

a) Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

c) Từ kết quả câu a, b ta được bảng sau:

Để học tốt Toán 9 | Giải bài tập Toán 9

Nhận xét:

- Hai hàm số

Để học tốt Toán 9 | Giải bài tập Toán 9

là hai hàm số đồng biến vì khi x tăng thì y cũng nhận được các giá trị tương ứng tăng lên.

- Cùng một giá trị của biến x, giá trị của hàm số y = g(x) luôn luôn lớn hơn giá trị tương ứng của hàm số y = f(x) là 3 đơn vị.

3 tháng 9 2016

giải dùm e với anh chị :(