Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để chứng minh rằng nếu A chia hết cho 2011 thì A cũng sẽ chia hết cho 2011^11, ta sẽ xét phần dư của A khi chia cho 2011.
Ta có A = (5a + 2006b)(6a + 2005b)(7a + 2004b)...(15a + 1996b)
Gọi B = a + 2007b, ta có A = (5B)(6B - B)(7B - 2B)...(15B - 10B) = 5*6*7*...*15 * B^11
Vì A chia hết cho 2011, suy ra B^11 chia hết cho 2011, nghĩa là B chia hết cho 2011.
Do đó, B = 2011k với k là số nguyên dương.
Từ đó, ta có A = 5*6*7*...*15 * (2011k)^11 = (5*6*7*...*15)*(2011^11)*k^11
Vì 5*6*7*...*15 chia hết cho 2011 nên A chia hết cho 2011^11.
Vậy nếu A chia hết cho 2011 thì A cũng chia hết cho 2011^11.
Các thừa số của C đều có dạng : na + ( 2011 - n ) b = 2011b + n ( a - b ) với n = 5 ; 6 ; ... ; 15 (1)
Nếu C chia hết cho số nguyên 2011 thì tồn tại ít nhất một thừa số của C chia hết cho 2011, đó là ma + ( 2011 - m ) b = 2011b + m ( a - b ) với m thỏa mãn 5 \(\le\) m \(\le\) 15
Từ đó :
=> m ( a - b ) chia hết cho 2011 mà 5 \(\le\) m \(\le\) 15 nên a - b chia hết cho 2011
=> Các thừa số n ( a - b ), ứng n = 5 ; 6 ; .... ; 15 đều chia hết cho 11. Do đó theo (1) tất cả 11 thừa số của C đều chia hết cho 2011
Vậy nếu C chia hết cho 2011 thì C cũng chia hết cho 201111
\(Giải\)
Vì: 11 là số nguyên tố mà:(5a+6b)(6a+5b) chia hết cho 11
nên ít nhất 1 trong 2 số trên chia hết cho 11
+) 2 số chia hết cho 11 khi đó (5a+6b)(6a+5b) chia hết cho 121
+) 5a+6b chia hết cho 11
=> 11a+11b-5a-6b chia hết cho 11 <=> 6a+5b chia hết cho 11
=> (5a+6b)(6a+5b) chia hết cho 121
+) 6a+5b chia hết cho 11
=> 11a+11b-6a-5b chia hết cho 11
<=> 5a+6b chia hết cho 11
=> (5a+6b)(6a+5b) chia hết cho 11
Vậy: nếu (5a+6b)(6a+5b) chia hết cho 11 thì tích đó cũng chia hết cho 121 (đpcm)
ong số học, bội số chung nhỏ nhất (hay còn gọi tắt là bội chung nhỏ nhất, viết tắt là BCNN, tiếng Anh: least common multiple hoặc lowest common multiple (LCM) hoặc smallest common multiple) của hai số nguyên a và b là số nguyên dương nhỏ nhất chia hết cho cả a và b.[1] Tức là nó có thể chia cho a và b mà không để lại số dư. Nếu a hoặc b là 0, thì không tồn tại số nguyên dương chia hết cho a và b, khi đó quy ước rằng LCM(a, b) là 0.
Định nghĩa trên đôi khi được tổng quát hoá cho hơn hai số nguyên dương: Bội chung nhỏ nhất của a1,..., an là số nguyên dương nhỏ nhất là bội số của a1,..., an.
Lời giải:
a.
$2a+3b\vdots 13$
$\Leftrightarrow 2a+13a+3b\vdots 13$
$\Leftrightarrow 15a+3b\vdots 13$
$\Leftrightarrow 3(5a+b)\vdots 13$
$\Leftrightarrow 5a+b\vdots 13$
b.
$4a+3b\vdots 11$
$\Leftrightarrow 4a-11a+3b\vdots 11$
$\Leftrightarrow -7a+3b\vdots 11$
$\Leftrightarrow -(7a-3b)\vdots 11$
$\Leftrightarrow 7a-3b\vdots 11$ (đpcm)
Kb vs mk đi bạn mk thích Kid lm , nha !!!