K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3

Để chứng minh rằng nếu A chia hết cho 2011 thì A cũng sẽ chia hết cho 2011^11, ta sẽ xét phần dư của A khi chia cho 2011.

Ta có A = (5a + 2006b)(6a + 2005b)(7a + 2004b)...(15a + 1996b)
Gọi B = a + 2007b, ta có A = (5B)(6B - B)(7B - 2B)...(15B - 10B) = 5*6*7*...*15 * B^11

Vì A chia hết cho 2011, suy ra B^11 chia hết cho 2011, nghĩa là B chia hết cho 2011.

Do đó, B = 2011k với k là số nguyên dương.

Từ đó, ta có A = 5*6*7*...*15 * (2011k)^11 = (5*6*7*...*15)*(2011^11)*k^11

Vì 5*6*7*...*15 chia hết cho 2011 nên A chia hết cho 2011^11.

Vậy nếu A chia hết cho 2011 thì A cũng chia hết cho 2011^11.

Các thừa số của C đều có dạng : na + ( 2011 - n ) b = 2011b + n ( a - b ) với n = 5 ; 6 ; ... ; 15 (1)

Nếu C chia hết cho số nguyên 2011 thì tồn tại ít nhất một thừa số của C chia hết cho 2011, đó là ma + ( 2011 - m ) b = 2011b + m ( a - b ) với m thỏa mãn 5 \(\le\) \(\le\) 15 

Từ đó :

=> m ( a - b ) chia hết cho 2011 mà 5 \(\le\) m \(\le\) 15 nên a - b chia hết cho 2011

=> Các thừa số n ( a - b ), ứng n = 5 ; 6 ; .... ; 15 đều chia hết cho 11. Do đó theo (1) tất cả 11 thừa số của C đều chia hết cho 2011

Vậy nếu C chia hết cho 2011 thì C cũng chia hết cho 201111

16 tháng 1 2017

hu hu chưa có ai giúp mình à

16 tháng 1 2017

em ko bít làm vì em mới lớp 5

1 tháng 1 2019

\(Giải\)

Vì: 11 là số nguyên tố mà:(5a+6b)(6a+5b) chia hết cho 11

nên ít nhất 1 trong 2 số trên chia hết cho 11

+) 2 số chia hết cho 11 khi đó (5a+6b)(6a+5b) chia hết cho 121

+) 5a+6b chia hết cho 11

=> 11a+11b-5a-6b chia hết cho 11 <=> 6a+5b chia hết cho 11

=> (5a+6b)(6a+5b) chia hết cho 121

+) 6a+5b chia hết cho 11

=> 11a+11b-6a-5b chia hết cho 11

<=> 5a+6b chia hết cho 11

=> (5a+6b)(6a+5b) chia hết cho 11

Vậy: nếu  (5a+6b)(6a+5b) chia hết cho 11 thì tích đó cũng chia hết cho 121 (đpcm)

5 tháng 11 2017

ong số học, bội số chung nhỏ nhất (hay còn gọi tắt là bội chung nhỏ nhất, viết tắt là BCNN, tiếng Anh: least common multiple hoặc lowest common multiple (LCM) hoặc smallest common multiple) của hai số nguyên a và b là số nguyên dương nhỏ nhất chia hết cho cả a và b.[1] Tức là nó có thể chia cho a và b mà không để lại số dư. Nếu a hoặc b là 0, thì không tồn tại số nguyên dương chia hết cho a và b, khi đó quy ước rằng LCM(a, b) là 0.

Định nghĩa trên đôi khi được tổng quát hoá cho hơn hai số nguyên dương: Bội chung nhỏ nhất của a1,..., an là số nguyên dương nhỏ nhất là bội số của a1,..., an.

AH
Akai Haruma
Giáo viên
22 tháng 11 2021

Lời giải:

a.

$2a+3b\vdots 13$

$\Leftrightarrow 2a+13a+3b\vdots 13$

$\Leftrightarrow  15a+3b\vdots 13$

$\Leftrightarrow 3(5a+b)\vdots 13$

$\Leftrightarrow  5a+b\vdots 13$

b.

$4a+3b\vdots 11$

$\Leftrightarrow 4a-11a+3b\vdots 11$

$\Leftrightarrow -7a+3b\vdots 11$

$\Leftrightarrow -(7a-3b)\vdots 11$

$\Leftrightarrow 7a-3b\vdots 11$ (đpcm)