Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì \(3-2\sqrt{2}>0\) nên hàm số đồng biến
b) Thay \(x=3+2\sqrt{2}\) vào hàm số, ta được:
\(y=\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right)+\sqrt{2}-1\)
\(=9-8+\sqrt{2}-1\)
\(=\sqrt{2}\)
a) `a=3-2\sqrt2>0 =>` Hàm số đồng biến.
b) `y=(3-2\sqrt2)(3+2\sqrt2)+\sqrt2-1=3^2-(2\sqrt2)^2+\sqrt2-1=\sqrt2`
`=> y=\sqrt2` khi `x=3+2\sqrt2`
Lời giải:
a. Hệ số 2>0 nên hàm đồng biến
b. Hệ số $1-\sqrt{2}<0$ nên hàm nghịch biến
c. Hệ số $-5<0$ nên hàm nghịch biến
d. Hệ số $1+m^2>0$ với mọi $m\in\mathbb{R}$ nên hàm đồng biến
e. Hệ số $\sqrt{3}-1>0$ nên hàm đồng biến
f. Hệ số $2+m^2>0$ với mọi $m\in\mathbb{R}$ nên hàm đồng biến.
a) y = 1 - 5x là một hàm số bậc nhất với a = -5, b = 1. Đó là một hàm số nghịch biến vì -5 < 0.
b) y = -0,5x là một hàm bậc nhất với a \(\approx\)-0,5, b = 0. Đó là một hàm số nghịch biến vì -0,5 < 0.
c) y = \(\sqrt{ }\)2(x - 1) + \(\sqrt{ }\)3 là một hàm số bậc nhất với a = \(\sqrt{ }\)2, b = \(\sqrt{ }\)3 - \(\sqrt{ }\)2. Đó là một hàm số đồng biến vì \(\sqrt{ }\)2 > 0.
d) y = 2x2 + 3 không phải là một hàm số bậc nhất vì nó không có dạng y = ax + b, với a \(\ne\) 0.
a: Vì a=3>0 nên hàm số đồng biến trên R
b: \(y=0x+\left(1-\sqrt{2}\right)\)
Vì a=0 nên hàm số không đồng biến cũng không nghịch biến
c: Lấy \(x_1;x_2\in R;x_1< x_2\)
\(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{3x_1^3-3-3x_2^3+3}{x_1-x_2}=3\left(x_1^2+x_1x_2+x_2^2\right)>0\)
=>Hàm số đồng biến trên R