K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có:

Tập nghiệm của phương trình là \({S_1} = \left\{ 2 \right\}\)

\(\left( {x - 2} \right)\left( {{x^2} + 1} \right) = 0\; \Leftrightarrow x - 2 = 0\; \Leftrightarrow x = 2\)

Tập nghiệm của phương trình là \({S_2} = \left\{ 2 \right\}\)

Vậy tập nghiệm của 2 phương trình là tương đương.

15 tháng 8 2023

tham khảo

a)Chia cả hai vế của phương trình cho \(2\), ta được:

\(log_2x=-\dfrac{3}{2}\)

Vậy \(log_2x=-\dfrac{3}{2}\)

b) Áp dụng định nghĩa của logarit, ta có:
\(log_2x=-\dfrac{3}{2}\Leftrightarrow2^{-\dfrac{3}{2}}=x\)

Vậy \(x=\dfrac{\sqrt{2}}{4}\)

 

22 tháng 9 2023

a) ­­­Phương trình thể hiện dân số sau t năm gấp đôi dân số ban đầu là:

            \(S=2S.e^{1,14.t}\Leftrightarrow2e^{1,14t}=1\Leftrightarrow e^{1,14t}=\dfrac{1}{2}\)

b) Phương trình vừa tìm được có ẩn là t và nằm ở vị trí mũ của lũy thừa

NV
28 tháng 3 2021

3.

Đặt \(f\left(x\right)=x^4-3x^3+x-\dfrac{1}{8}\)

Hàm \(f\left(x\right)\) liên tục trên R

Do \(f\left(x\right)\) là đa thức bậc 4 nên có tối đa 4 nghiệm

Ta có: \(f\left(-1\right)=\dfrac{23}{8}>0\)

\(f\left(0\right)=-\dfrac{1}{8}< 0\Rightarrow f\left(-1\right).f\left(0\right)< 0\)

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-1;0\right)\)

\(f\left(\dfrac{1}{2}\right)=\dfrac{1}{16}>0\Rightarrow f\left(0\right).f\left(\dfrac{1}{2}\right)< 0\)

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;\dfrac{1}{2}\right)\)

\(f\left(1\right)=-\dfrac{9}{8}< 0\Rightarrow f\left(\dfrac{1}{2}\right).f\left(1\right)< 0\)

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(\dfrac{1}{2};1\right)\)

\(f\left(3\right)=\dfrac{23}{8}>0\Rightarrow f\left(1\right).f\left(3\right)< 0\)

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(1;3\right)\)

Vậy pt có 4 nghiệm thuộc các khoảng nói trên

NV
28 tháng 3 2021

4.

\(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{x^2+ax+2017}+x\right)=\lim\limits_{x\rightarrow-\infty}\dfrac{ax+2017}{\sqrt{x^2+ax+2017}-x}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{a+\dfrac{2017}{x}}{-\sqrt{1+\dfrac{a}{x}+\dfrac{2017}{x^2}}-1}=-\dfrac{a}{2}\)

\(\Rightarrow-\dfrac{a}{2}=6\Rightarrow a=-12\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có: \(\frac{{x - 1}}{{x + 1}}\;\)xác định khi \(x + 1 \ne 0 \Leftrightarrow x \ne  - 1\)

\(\frac{{x - 1}}{{x + 1}} = 0 \Leftrightarrow x - 1 = 0 \Leftrightarrow x = 1\;\)

Tập nghiệm của phương trình là \({S_1} = \left\{ 1 \right\}\)

\({x^2} - 1 = 0 \Leftrightarrow {x^2} = 1 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x =  - 1}\end{array}} \right.\;\)

Tập nghiệm của phương trình là \({S_2} = \left\{ {1; - 1} \right\}\)

Vậy tập nghiệm của 2 phương trình là không tương đương nhau