K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2020

1. Ta có : 3x+12=0 <=> x= -4

bảng xét dấu:

x -∞ -4 + ∞
3x+12

- 0 +

f(x) >0 ∀ x ∈ (-4;+∞)

f(x) <0 ∀ x∈ (-∞;-4)

2. Ta có : -5x+9=0 <=> x= \(\frac{9}{5}\)

Bảng xét dấu:

x -∞ 9/5 +∞
-5x+9 + 0 -

f(x) >0 ∀ x ∈ (-∞; 9/5)

f(x) <0 ∀ x ∈(9/5; +∞)

3. Ta có : -3x-9=0 <=> x= -3

x -∞ -3 +∞
-3x-9 + 0 -

f(x) >0 ∀ x∈ (-∞; -3)

f(x) <0 ∀x∈ ( -3; +∞ )

4. Ta có : x (2x+4)=0

+, x=0

+, 2x+4=0 <=> x= -2

x -∞ -2 0 +∞
x - \(|\) - 0 +
2x+4 - 0 + \(|\) +
f (x) + 0 - 0 +

f(x) >0 ∀ x ∈ (-∞; -2) \(\cup\) (0; +∞)

f(x) <0 ∀ x ∈ (-2;0)

5. Ta có: (x-2)(-x+4)=0

+, x-2=0 <=> x=2

+, -x+4=0 <=> x= 4

x -∞ 2 4 +∞
x-2 - 0 + \(|\) +
-x+4 + \(|\) + 0 -
f(x) - 0 + 0 -

f(x) >0 ∀ x ∈ (2;4)

f (x) <0 ∀x∈ (-∞;2) \(\cup\)(4; +∞)

6. Ta có : (-4x+3)(x-6)=0

+, -4x+3=0 <=>x= \(\frac{3}{4}\)

+, x-6 =0 <=> x=6

x -∞ 3/4 6 +∞
-4x+3 + 0 - \(|\) -
x-6 - \(|\) - 0 +
f(x) - 0 + 0 -

f(x) >0 ∀ x∈ (3/4;6)

f(x) <0 ∀ x∈ (-∞; 3/4) \(\cup\)(6;+∞)

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Ta có \(a = 3 > 0,b =  - 4,c = 1\)

\(\Delta ' = {\left( { - 2} \right)^2} - 3.1 = 1 > 0\)

\( \Rightarrow \)\(f\left( x \right)\) có 2 nghiệm \(x = \frac{1}{3},x = 1\). Khi đó:

\(f\left( x \right) > 0\) với mọi x thuộc các khoảng \(\left( { - \infty ;\frac{1}{3}} \right)\) và \(\left( {1; + \infty } \right)\);

\(f\left( x \right) < 0\) với mọi x thuộc các khoảng \(\left( {\frac{1}{3};1} \right)\)

b) Ta có \(a = 9 > 0,b = 6,c = 1\)

\(\Delta ' = 0\)

\( \Rightarrow \)\(f\left( x \right)\) có 1 nghiệm \(x =  - \frac{1}{3}\). Khi đó:

\(f\left( x \right) > 0\) với mọi \(x \in \mathbb{R}\backslash \left\{ { - \frac{1}{3}} \right\}\)

c) Ta có \(a = 2 > 0,b =  - 3,c = 10\)

\(\Delta  = {\left( { - 3} \right)^2} - 4.2.10 =  - 71 < 0\)

\( \Rightarrow \)\(f\left( x \right) > 0\forall x \in \mathbb{R}\)

d) Ta có \(a =  - 5 < 0,b = 2,c = 3\)

\(\Delta ' = {1^2} - \left( { - 5} \right).3 = 16 > 0\)

\( \Rightarrow \)\(f\left( x \right)\) có 2 nghiệm \(x = \frac{{ - 3}}{5},x = 1\). Khi đó:

\(f\left( x \right) < 0\) với mọi x thuộc các khoảng \(\left( { - \infty ; - \frac{3}{5}} \right)\) và \(\left( {1; + \infty } \right)\);

\(f\left( x \right) > 0\) với mọi x thuộc các khoảng \(\left( { - \frac{3}{5};1} \right)\)

e) Ta có \(a =  - 4 < 0,b = 8c =  - 4\)

\(\Delta ' = 0\)

\( \Rightarrow \)\(f\left( x \right)\) có 1 nghiệm \(x = 1\). Khi đó:

\(f\left( x \right) < 0\) với mọi \(x \in \mathbb{R}\backslash \left\{ 1 \right\}\)

g) Ta có \(a =  - 3 < 0,b = 3,c =  - 1\)

\(\Delta  = {3^2} - 4.\left( { - 3} \right).\left( { - 1} \right) =  - 3 < 0\)

\( \Rightarrow \)\(f\left( x \right) < 0\forall x \in \mathbb{R}\)

7 tháng 11 2019

f(x) = (4x2 – 1)(–8x2 + x – 3)(2x + 9)

+ Tam thức 4x2 – 1 có hai nghiệm x = –1/2 và x = 1/2, hệ số a = 4 > 0

Do đó 4x2 – 1 mang dấu + nếu x < –1/2 hoặc x > 1/2 và mang dấu – nếu –1/2 < x < 1/2

+ Tam thức –8x2 + x – 3 có Δ = –95 < 0, hệ số a = –8 < 0 nên luôn mang dấu –.

+ Nhị thức 2x + 9 có nghiệm x = –9/2.

Ta có bảng xét dấu:

Giải bài 2 trang 105 SGK Đại Số 10 | Giải toán lớp 10

Kết luận:

f(x) > 0 khi x ∈ (–∞; –9/2) ∪ (–1/2; 1/2)

f(x) = 0 khi x ∈ {–9/2; –1/2; 1/2}

f(x) < 0 khi x ∈ (–9/2; –1/2) ∪ (1/2; +∞)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) \(f\left( x \right) = 2{x^2} + 4x + 2\) có \(\Delta  = 0\), có nghiệm kép là \({x_1} = {x_2} =  - 1\)

và \(a = 2 > 0\)

Ta có bảng xét dấu như sau:

 

Vậy \(f\left( x \right)\) dương với mọi \(x \ne  - 1\)

b) \(f\left( x \right) =  - 3{x^2} + 2x + 21\) có \(\Delta  = 256 > 0\), hai nghiệm phân biệt là \({x_1} =  - \frac{7}{3};{x_2} = 3\)

và \(a =  - 3 < 0\)

Ta có bảng xét dấu như sau:

 

Vậy \(f\left( x \right)\) dương với \(x \in \left( { - \frac{7}{3};3} \right)\) và âm khi \(x \in \left( { - \infty ; - \frac{7}{3}} \right) \cup \left( {3; + \infty } \right)\)

c) \(f\left( x \right) =  - 2{x^2} + x - 2\) có \(\Delta  =  - 15 < 0\), tam thức vô nghiệm

và \(a =  - 2 < 0\)

Ta có bảng xét dấu như sau:

 

Vậy \(f\left( x \right)\) âm với mọi \(x \in \mathbb{R}\)

d) \(f\left( x \right) =  - 4x\left( {x + 3} \right) - 9 =  - 4{x^2} - 12x - 9\) có \(\Delta  = 0\), tam thức có nghiệm kép \({x_1} = {x_2} =  - \frac{3}{2}\) và \(a =  - 4 < 0\)

Ta có bảng xét dấu như sau

 

Vậy \(f\left( x \right)\) âm với mọi \(x \ne  - \frac{3}{2}\)

e) \(f\left( x \right) = \left( {2x + 5} \right)\left( {x - 3} \right) = 2{x^2} - x - 15\) có \(\Delta  = 121 > 0\), có hai nghiệm phân biệt \({x_1} =  - \frac{5}{2};{x_2} = 3\) và có \(a = 2 > 0\)

Ta có bảng xét dấu như sau

 

Vậy \(f\left( x \right)\) âm với \(x \in \left( { - \frac{5}{2};3} \right)\) và dương khi \(x \in \left( { - \infty ; - \frac{5}{2}} \right) \cup \left( {3; + \infty } \right)\)

6 tháng 2 2021

a, \(Chof\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)

- Lập bảng xét dấu :

Vậy \(\left\{{}\begin{matrix}f\left(x\right)>0\Leftrightarrow x\in\left(3;4\right)\\f\left(x\right)< 0\Leftrightarrow x\in\left(-\infty;3\right)\cup\left(4;+\infty\right)\\f\left(x\right)=0\Leftrightarrow x\in\left\{3;4\right\}\end{matrix}\right.\)

b, \(f\left(x\right)=\left(x-1\right)\left(x+6\right)\)

( Làm tương tự câu a )

 

Đề bài yêu cầu gì?