K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2021

undefined

NV
18 tháng 4 2021

\(P=\dfrac{1}{x}+\dfrac{4}{4y}\ge\dfrac{\left(1+2\right)^2}{x+4y}=\dfrac{9}{6}=\dfrac{3}{2}\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(2;1\right)\)

NV
28 tháng 3 2021

Bạn kiểm tra lại đề bài, với biểu thức thế này thì không thể tìm được điểm rơi (nó là nghiệm của 1 pt bậc 4 hệ số rất xấu ko thể giải được)

NV
23 tháng 3 2022

\(x^3+y^3+3xy\le1\Leftrightarrow\left(x+y\right)^3-1-3xy\left(x+y\right)+3xy\le0\)

\(\Leftrightarrow\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)\le0\)

\(\Leftrightarrow\left(x+y-1\right)\left(x^2+y^2-xy+x+y+1\right)\le0\)

Do \(x^2+y^2-xy+x+y+1=\left(x-\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+x+y+1>0\)

\(\Rightarrow x+y-1\le0\Rightarrow x+y\le1\)

\(\Rightarrow P=\left(x+\dfrac{1}{4x}\right)+\left(y+\dfrac{1}{4y}\right)+\dfrac{3}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)

\(\Rightarrow P\ge2\sqrt{\dfrac{x}{4x}}+2\sqrt{\dfrac{y}{4y}}+\dfrac{3}{4}.\dfrac{4}{x+y}\ge2+\dfrac{3}{4}.\dfrac{4}{1}=5\)

\(P_{min}=5\) khi \(x=y=\dfrac{1}{2}\)

23 tháng 3 2022

Dạ , em cám ơn thầy Lâm nhiều ạ!

 

24 tháng 5 2020

\(P=\sqrt{x^4+x^2y^2}+x^2=\sqrt{x^4+\frac{1}{x^2}}+x^2\)

Ta có: \(x^4+\frac{1}{x^2}=x^4+\frac{1}{8x^2}+\frac{1}{8x^2}+...+\frac{1}{8x^2}\ge9\sqrt[9]{x^4.\left(\frac{1}{8x^2}\right)^8}\)

\(=9\sqrt[9]{\frac{1}{8^8.x^{12}}}\)

=> \(P=3\sqrt[18]{\frac{1}{8^8.x^{12}}}+x^2\)

\(=\sqrt[18]{\frac{1}{8^8x^{12}}}+\sqrt[18]{\frac{1}{8^8x^{12}}}+\sqrt[18]{\frac{1}{8^8x^{12}}}+x^2\)

\(\ge4\sqrt[4]{\left(\sqrt[18]{\frac{1}{8^8x^{12}}}\right)^3.x^2}\)

\(=4.\left(\frac{1}{8^{\frac{1}{3}}.x^{\frac{1}{2}}}\right).x^2=2\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x^4=\frac{1}{8x^2}\\x^2=\sqrt[8]{\frac{1}{8^8x^{12}}}\end{cases}}\)<=> x^2 = 1/2 khi đó y = 2 , x = \(\frac{1}{\sqrt{2}}\)

Vậy GTNN của P = 2.

NV
23 tháng 4 2021

\(P=\dfrac{x^2+1}{8}+\dfrac{1}{\sqrt{x^2+1}}+\dfrac{1}{\sqrt{x^2+1}}\ge3\sqrt[3]{\dfrac{x^2+1}{8\left(x^2+1\right)}}=\dfrac{3}{2}\)

\(P_{min}=\dfrac{3}{2}\) khi \(x=\pm\sqrt{3}\)

18 tháng 4 2021

Áp dụng BĐT cói cho 2 số ko âm ta có 

X^2+y^2 >= 2 .căn x^2 .y^2 = 2.xy= 2.6 =12 

Vậy P min =12 dấu = xảy ra khi x^2=y^2 <=> x=y 

( thông cảm mình gõ mũ ko đc ) 

NV
21 tháng 4 2021

\(y\ge\dfrac{8-x}{x+1}\Rightarrow P\ge4x+\dfrac{8-x}{x+1}+3=\dfrac{4x^2+6x+11}{x+1}=\dfrac{4x^2-4x+1+10\left(x+1\right)}{x+1}=\dfrac{\left(2x-1\right)^2}{x+1}+10\ge10\)

\(P_{min}=10\) khi \(\left(x;y\right)=\left(\dfrac{1}{2};5\right)\)

7 tháng 4 2016

Ta có \(2\left(x+y\right)=z\left(xy-7\right)\), do x,y,z là các số dương  nên xy-7>0.

Khi đó, từ giả thiết ta được : \(z=\frac{2\left(x+y\right)}{xy-7}\)

Suy ra \(S=f\left(x;y\right)=2x+y+\frac{4\left(x+y\right)}{xy-7}\) với điều kiện \(x>0;y>0,xy>7\) (*)

Với mỗi x cố định, xét đạo hàm của hàm số \(f\left(x;y\right)\) theo ẩn y ta được :

\(f'_y\left(x;y\right)=1+\frac{4\left(xy-7\right)-4x\left(x+y\right)}{\left(xy-7\right)^2}=1-\frac{28+4x^2}{\left(xy-7\right)^2}\)

\(f'_y\left(x;y\right)=0\Leftrightarrow x^2y^2-14xy+21-4x^2=0\)

             \(\Leftrightarrow y_0=\frac{7}{x}+2\sqrt{1+\frac{7}{x^2}}\)

Suy ra \(f\left(x;y_0\right)=2x+\frac{11}{x}+4\sqrt{1+\frac{7}{x^2}}\)

Xét hàm số : \(g\left(x\right)=2x+\frac{11}{x}+4\sqrt{1+\frac{7}{x^2}}\) với x>0, với \(g'\left(x\right)=2-\frac{11}{x^2}-\frac{28}{x^3\sqrt{1+\frac{7}{x^2}}}\)

\(g'\left(x\right)=0\Leftrightarrow x=3\)

Khi đó \(g\left(x\right)\ge g\left(3\right)\Leftrightarrow g\left(x\right)\ge15\)

Với điều kiện (*), ta có \(S\ge f\left(x;y_0\right)=g\left(x\right)\ge15\)

Vậy MinS=15 khi x=3, y=5, z=2