Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Đặt A C = x x > 0
Gọi H là trung điểm của AC khi đó B H ⊥ A C S H ⊥ A C
Suy ra A C ⊥ S H B . Gọi E là trung điểm của SB ta có: C E = A E = a 3 2 .
Do tam giác EAC cân tại E nên
E H ⊥ A C ⇒ H E = C E 2 − C H 2 = 3 a 2 4 − x 2 4 .
Ta có: V A B C D = V C . S H B + V A . S H B = 1 3 . A C . S S H B = 1 3 x . 3 a 2 4 − x 2 4 . a 2
Lại có 3 a 2 4 − x 2 4 . x = 2. 3 a 2 4 − x 2 4 . x 2 ≤ 3 a 2 4 − x 2 4 + x 2 4
= 3 a 2 4 ⇒ V S . A B C ≤ a 3 8 ⇒ V m ax = a 3 8 .
Dấu bằng xảy ra ⇔ 3 a 2 = 2 x 2 ⇔ x = a 6 2 .
Đáp án C
S S A B = 1 2 S A . S B sin ≤ S A . S B ; d C l S A B ≤ S C
Khối chóp S.ABC có thể tích lớn nhất
S A ⊥ S B ⊥ S C ⇒ V max = 1 6 S A . S B . S C = a 3
Đặt
Dựng hình chóp S . A ' B ' C ' sao cho A, B, C lần lượt là trung điểm của B ' C ' ; C ' A ' ; A ' B ' .
Dễ thấy đồng dạng với ∆ A ' B ' C ' theo tỉ số
Ta có AB, BC, CA là các đường trung bình của tam giác A ' B ' C '
là các tam giác vuông tại S (Tam giác có trung tuyến ứng với một cạnh bằng nửa cạnh ấy)
⇒ S A ' ; S B ' ; S C ' đôi một vuông góc
Áp dụng định lí Pytago ta có:
Thay
Chọn D.
Đáp án A
Thể tích khối chóp S.ABC là:
V S . A B C = 2 12 . x 2 + y 2 − z 2 y 2 + z 2 − x 2 x 2 + z 2 − y 2
Mà: x 2 + y 2 − z 2 y 2 + z 2 − x 2 x 2 + z 2 − y 2
≤ x 2 + y 2 − z 2 + y 2 + z 2 − x 2 + x 2 + z 2 − y 2 27
= x 2 + y 2 + z 2 3 27
Suy ra: S . A B C ≤ 2 12 . x 2 + y 2 + z 2 27
= 2 12 . 12 3 27 = 2 2 3
Vậy: V max = 2 2 3
Đáp án C
Áp dụng công thức tính thể tích tứ diện có hai cặp cạnh đối bằng nhau:
V S A B C = 1 6 2 x 2 + y 2 − z 2 y 2 + z 2 − x 2 z 2 + x 2 − y 2 ≤ 1 6 2 x 2 + y 2 − z 2 + y 2 + z 2 − x 2 + z 2 + x 2 − y 2 3 3 = 1 6 2 x 2 + y 2 + z 2 3 3 = 1 6 2 12 3 3 = 1 6 2 .8 = 2 2 3
Như vậy V S A B C lớn nhất bằng 2 2 3 khi: x=y=z=2
Đáp án đúng : B