K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2018

Chọn B

Xếp 9 người vào 9 ghế kê hàng ngang ta có: Ω =9! cách sắp xếp.

Gọi B là biến cố để “mỗi thầy giáo ngồi giữa 2 học sinh và học sinh A ngồi ở một trong hai đầu hàng.”

Theo đề, học sinh A ngồi ở một trong hai đầu hàng nên có 2 cách sắp xếp.

Xếp 5 học sinh còn lại vào 5 vị trí có 5! cách sắp xếp. Xem mỗi học sinh tạo thành một vách ngăn tạo thành 5 khoảng trống. Xếp 3 thầy vào 5 khoảng trống có  A 5 3  cách.

 cách.

7 tháng 5 2019

Chọn A

Xếp 6 học sinh có 6! cách xếp.

Giữa 6 học sinh có 5 khoảng trống.

Xếp 3 thầy giáo A, B, C vào 5 khoảng trống trên có: A 5 3  cách.

Vậy số cách xếp thỏa mãn yêu cầu là: 6!. A 5 3 = 43200 cách.

Chọn B

27 tháng 2 2023

  `n(\Omega)=6! =720`

`@TH1:` H/s lớp `C` ngồi đầu tiên hoặc cuối cùng.

  `=>` Có `2.1.A_3 ^1 .4! =144` cách xếp h/s lớp `C` không ngồi cạnh lớp `B`.

`@TH2:` H/s lớp `C` không ngồi đầu cũng không ngồi cuối.

  `=>` Có `4.A_3 ^2 .3! =144` cách xếp h/s lớp `C` không ngồi cạnh lớp `B`.

Gọi `A:`" H/s lớp `C` không ngồi cạnh h/s lớp `B`"

   `=>n(A)=144.2=288`

`=>P(A)=288/720=2/5`

    `->bb D`

15 tháng 6 2018

Do mỗi học sinh lớp 12 ngồi giữa hai học sinh khối 11 nên ở vị trí đầu tiên và cuối cùng của dãy ghế sẽ là học sinh khối 11.

Bước 1: Xếp 6 học sinh lớp 11 thành một hàng ngang, có 6! cách.

Bước 2: giữa 6 bạn học sinh lớp 11 có 5 khoảng trống, chọn 3 khoảng trống trong 5 khoảng trống để xếp các bạn lớp 12, có  cách( có liên quan đến thứ tự).

Theo quy tắc nhân có  cách xếp thỏa yêu cầu.

Chọn C.

30 tháng 9 2017

Chọn C

Số phần tử của không gian mẫu: .

Gọi biến cố : “Xếp 10 học sinh vào 10 ghế sao cho mỗi học sinh nam đều ngồi đối diện một học sinh nữ”.

Giả sử đánh vị trí ngồi như bảng sau:

Cách 1: Xếp vị trí A 1  có 10 cách. Mỗi cách xếp vị trí  A 1  sẽ có 5 cách xếp vị trí B 1 .

Mỗi cách xếp vị trí  A 1 ,  B 1  có 8 cách xếp vị trí , tương ứng sẽ có 4 cách xếp vị trí B 2 .

Cứ làm như vậy thì số cách xếp thỏa mãn biến cố  là: 

Cách 2: Đánh số cặp ghế đối diện nhau là C1, C2, C3, C4, C5

Xếp  bạn nam vào 5 cặp ghế có 5! cách.

Ở mỗi cặp ghế, ta có 2 cách xếp một cặp nam, nữ ngồi đối diện.

Số phần tử của A là: 

5 tháng 1 2018

4 tháng 3 2018


20 tháng 6 2019

Chọn D

Cách 1. Xếp ngẫu nhiên 10 học sinh vào hai dãy ghế có  cách.

Đánh số ghế lần lượt từ 1 đến 10.

 

Xếp học sinh thỏa mãn bài toán xảy ra hai khả năng sau:

Khả năng 1: Nam ngồi vị trí lẻ, nữ ngồi vị trí chẵn có 5!.5! cách.

Khả năng 2: Nam ngồi vị trí chẵn, nữ ngồi vị trí lẻ có 5!.5! cách.

Vậy có tất cả 2. ( 5 ! ) 2  cách.

Xác suất cần tìm bằng 

Cách 2: Xếp ngẫu nhiên 10 học sinh vào hai dãy ghế, có 10! cách xếp.

Ta chia hai dãy ghế thành 5 cặp ghế đối diện:

+ Chọn 1 nam và 1 nữ xếp vào cặp ghế 1 có   cách;

+ Chọn 1 nam và 1 nữ xếp vào cặp ghế 2 có  cách;

+ Chọn 1 nam và 1 nữ xếp vào cặp ghế 3 có  cách;

+ Chọn 1 nam và 1 nữ xếp vào cặp ghế 4 có  cách;

+ Chọn 1 nam và 1 nữ xếp vào cặp ghế 5 có 1 cách.

Vậy có tất cả  cách xếp thỏa mãn.

Xác suất cần tìm bằng