Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bước 1: Xếp 3 bi đỏ khác nhau vào hộp có 7 ô trống có cách.
Bước 2: Xếp 3 bi xanh vào 4 ô trống còn lại,có cách.
Theo quy tắc nhân ta có cách.
Chọn C.
Đáp án là C
Số các hoán vị về màu bi khi xếp thành dãy là 3!
Số cách xếp 3 viên bi đen khác nhau thành dãy là 3!
Số cách xếp 4 viên bi đỏ khác nhau thành dãy là 4!
Số cách xếp 5 viên bi xanh khác nhau thành dãy là 5!
Số cách xếp các viên bi trên thành một dãy sao cho các viên bi cùng màu ở cạnh nhau là 3!. 3!. 4!. 5! = 103680 cách.
Xếp 6 viên bi xanh có 6! cách xếp, khi đó 6 viên bi xanh sẽ tạo thành 7 chỗ trống.
Xếp 4 viên bi vàng vào 7 chỗ trống đó là A 7 4 cách.
Do đó có A 7 4 . 6 ! = 604800 cách xếp.
Chọn A.
Xếp 5 thẻ đen có 5! cách xếp, khi đó 5 thẻ đen tạo thành 6 chỗ trống.
Xếp 3 thẻ trắng vào 6 chỗ trống thì không có 2 thẻ trắng nào cạnh nhau: có cách.
Do đó có cách xếp.
Chọn D.
Đáp án : C
Để xếp bi thỏa mãn yêu cầu thì các viên bi phải được xếp xen kẽ nhau.
Phương án 1: Vị trí đầu tiên là viên bi đỏ, sau đó xếp tiếp các viên bi còn lại. Vì yêu cầu xếp xen kẽ nên chỉ có 1 cách xếp trong tình huống này.
Phương án 2: Vị trí đầu tiên là viên bi đen. Tương tự như trên, chỉ có 1 cách xếp.
Vậy theo quy tắc cộng, số cách xếp bi thỏa mãn là 1 + 1 = 2 cách.
a.
Có \(C_{17}^5\) cách lấy 5 viên bi tùy ý từ 17 viên bi
b.
Lấy 1 bi trắng từ 7 bi trắng, 2 bi xanh từ 4 bi xanh và 2 bi đỏ từ 6 bi đỏ
Số cách lấy là: \(C_7^1.C_4^2.C_6^2\) cách
c.
Các trường hợp thỏa mãn: 1 trắng 1 đỏ 3 xanh, 1 trắng 2 đỏ 2 xanh, 1 trắng 3 đỏ 1 xanh, 2 trắng 1 đỏ 2 xanh, 2 trắng 2 đỏ 1 xanh
Số cách lấy là:
\(C_7^1C_6^1C_4^3+C_7^1C_6^2C_4^2+C_7^1C_6^3C_4^1+C_7^2C_6^1C_4^2+C_7^2C_6^2C_4^1\) cách
Thầy có thể giải thích cụ thể hơn về câu a được không thưa thầy?
Đây là bài toán chia kẹo Euler:
Gọi số bi xếp vào hộp 1 là \(x_1\) ; vào hộp 2 là \(x_2\) và hộp 3 là \(x_3\)
\(\Rightarrow x_1+x_2+x_3=10\)
Không gian mẫu là xếp bất kì, nghĩa là có thể có hộp rỗng (hay pt trên có thể có nghiệm bằng 0)
Theo bài toán chia kẹo Euler thì số trường hợp xuất hiện là: \(C^{3-1}_{10+3-1}=66\)
Còn số trường hợp thỏa mãn là chỉ xét trường hợp pt trên có nghiệm nguyên dương. Khi đó số trường hợp thỏa mãn là: \(C_{10-1}^{3-1}=36\)
Vì 3 bi đỏ đứng cạnh nhau gọi nhóm 3 bi đỏ là X, và 3 bi xanh đứng cạnh nhau nên gọi nhóm 3 bi xanh là Y.
Vì xếp vào hộc có 7 ô, có 3 viên bi đỏ chiếm 3 vị trí và 3 viên bi xanh chiếm 3 vị trí, còn lại 1 vị trí trống.
Bước 1: Ta xem chỉ có 3 vị trí để xếp X và Y, có A 3 2 cách.
Bước 2: Ứng với mỗi cách xếp ở bước 1, có 3! cách xếp 3 viên bi đỏ khác nhau, còn 3 viên bi xanh chỉ 1 cách xếp vì chúng giống nhau.
Theo quy tắc nhân có A 3 2 . 3 ! = 36 cách xếp thỏa yêu cầu.
Chọn D.