Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án là C
Số các hoán vị về màu bi khi xếp thành dãy là 3!
Số cách xếp 3 viên bi đen khác nhau thành dãy là 3!
Số cách xếp 4 viên bi đỏ khác nhau thành dãy là 4!
Số cách xếp 5 viên bi xanh khác nhau thành dãy là 5!
Số cách xếp các viên bi trên thành một dãy sao cho các viên bi cùng màu ở cạnh nhau là 3!. 3!. 4!. 5! = 103680 cách.
Xếp 6 viên bi xanh có 6! cách xếp, khi đó 6 viên bi xanh sẽ tạo thành 7 chỗ trống.
Xếp 4 viên bi vàng vào 7 chỗ trống đó là A 7 4 cách.
Do đó có A 7 4 . 6 ! = 604800 cách xếp.
Chọn A.
Xếp 5 thẻ đen có 5! cách xếp, khi đó 5 thẻ đen tạo thành 6 chỗ trống.
Xếp 3 thẻ trắng vào 6 chỗ trống thì không có 2 thẻ trắng nào cạnh nhau: có cách.
Do đó có cách xếp.
Chọn D.
Đáp án B
Hướng dẫn giải:
+ Số cách chọn 1 viên bi xanh:
+ Số cách chọn 2 viên bi đỏ:
+ Số cách chọn 5 viên bi trắng:
+ Số cách chọn 8 viên bi thỏa mãn yêu cầu bài toán:
a, Số cách chọn 6 viên bất kì là \(C_{23}^6=100947\) cách
Số cách chọn 6 viên chỉ màu vàng là \(C_8^6=28\) cách
Số cách chọn 6 viên chỉ màu xanh là \(C_{10}^6=210\) cách
\(\Rightarrow\) có \(100947-28-210=100709\) cách thỏa mãn.
b, Số cách chọn 6 viên có đủ 3 màu là \(5.8.10=400\)
Số cách chọn 6 viên bất kì là \(C_{23}^6=100947\)
\(\Rightarrow\) có \(100947-400=100547\) cách thỏa mãn.
Theo mình nghĩ là chọn 4 viên bi cùng màu mà nhỉ
Tổng các cách chọn 4 bi đỏ, 4 bi xanh, 4 bi trắng, 4 bi vàng:
\(C_{10}^4+C_{25}^4+C_6^4+C_9^4=10977\) (cách)
Đáp án : C
Để xếp bi thỏa mãn yêu cầu thì các viên bi phải được xếp xen kẽ nhau.
Phương án 1: Vị trí đầu tiên là viên bi đỏ, sau đó xếp tiếp các viên bi còn lại. Vì yêu cầu xếp xen kẽ nên chỉ có 1 cách xếp trong tình huống này.
Phương án 2: Vị trí đầu tiên là viên bi đen. Tương tự như trên, chỉ có 1 cách xếp.
Vậy theo quy tắc cộng, số cách xếp bi thỏa mãn là 1 + 1 = 2 cách.