Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: (P) : \(y=ax^2+bx+c\)
Vì (P) cắt trục Ox tại hai điểm có hoành độ lần lượt là -1 và 2
nên (P) cắt hai điểm A(-1;0) và B (2;0)
A (-1;0) ∈ (P) ⇔ 0 = a - b+c (1)
B (2;0) ∈ (P) ⇔ 0 = 4a+2b+c (2)
Mà (P) cắt trục Oy tại điểm có tung độ bằng -2
nên (P) cắt C ( 0;-2)
C (0;-2) ∈ (P) ⇔ -2 = c (3)
Từ (1) ,(2) và (3) ⇔ \(\left\{{}\begin{matrix}a-b+c=0\\4a+2b+c=0\\c=-2\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}a-b=2\\4a+2b=2\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}a=1\\b=-1\end{matrix}\right.\)
Vậy (P) : \(y=x^2-x-2\)
Câu 2: (P) : \(y=ax^2+bx+c\)
Vì (P) có đỉnh I ( -2;-1)
⇔ \(\left\{{}\begin{matrix}\dfrac{-b}{2a}=-2\\-1=4a-2b+c\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}-4a+b=0\\4a-2b+c=-1\end{matrix}\right.\)(1)
Mà (P) cắt trục tung tại điểm có tung độ bằng -3
nên (P) cắt A( 0;-3)
A(0;-3) ∈ (P) ⇔ -3 = c (2)
Từ (1) và (2) ⇔ \(\left\{{}\begin{matrix}-4a+b=0\\4a-2b+c=-1\\c=-3\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}-4a+b=0\\4a-2b=2\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}a=\dfrac{-1}{2}\\b=-2\end{matrix}\right.\)
Vậy (P) : \(y=\dfrac{-1}{2}x^2-2x-3\)
Lời giải:
$(P)$ cắt trục tung tại điểm có tung độ $-1$ tức $(P)$ đi qua $(0; -1)$
$\Rightarrow -1=a.0^2-2.0+c$
$\Rightarrow c=-1$
Để $P$ có min $=\frac{-4}{3}$ thì:
\(\left\{\begin{matrix}
a>0\\
\frac{4ac-b^2}{4a}=\frac{-4a-(-2)^2}{4a}=\frac{-4a-4}{4a}=\frac{-(a+1)}{a}=\frac{-4}{3}\end{matrix}\right.\)
\(\Leftrightarrow a=3\)
Vậy parabol là $y=3x^2-2x-1$
công thức này là công thức nào vậy ạ :\(\dfrac{4ac-b^2}{4a}\)
vì có ít time nên mk hướng dẩn thôi nha .
câu 1: vì parabol có đỉnh là \(I\left(-1;-4\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{-b}{2a}=-1\\16a-4b+c=-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=2a\\c=-4-8a\end{matrix}\right.\) (1)
và nó cắt trục tung tại điểm có tung độ là \(1\) \(\Rightarrow c=1\) (2)
từ (1) và (2) ta có hệ : \(\Rightarrow a;b;c\)
câu 2 : vì parabol có đỉnh là \(I\left(-1;-4\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{-b}{2a}=-1\\16a-4b+c=-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=2a\\c=-4-8a\end{matrix}\right.\)
thế vào \(M\) đưa về dạng bình phương 1 số là ô kê .
câu 3 : tương tự câu 2 thôi nha
từ dữ liệu đề bài \(\Rightarrow\left\{{}\begin{matrix}4a-2b+c=0\\a+b+a=0\end{matrix}\right.\) \(\Rightarrow\) ........................
Vì (P) có trục đối xứng x = 1 => \(-\dfrac{b}{2a}=1\left(1\right)\)
Vì (P) đi qua A(2; 3) => với x = 2 thì y = 3 => 4a + 2b + c = 3 (2)
Vì (P0 cắt trục tung tại điểm có tung độ bằng 3 => Với x = 0 thì y = 3 => c = 3 (3)
Từ (1), (2), (3) ta có:
\(\left\{{}\begin{matrix}-\dfrac{b}{2a}=1\\4a+2b+c=3\\c=3\end{matrix}\right.\) => ...
=> xem lại đề @@
a) Vì parabol đi qua M(1; 5) nên tọa độ của M nghiệm đúng phương trình của parabol: 5 = a.12 + b.1 + 2.
Tương tự, với N(- 2; 8) ta có: 8 = a.(- 2)2 + b.(- 2) + 2
Giải hệ phương trình: ta được a = 2, b = 1.
Parabol có phương trình là: y = 2x2 + x + 2.
b) Giải hệ phương trình:
Parabol: y = x2 - x + 2.
c) Giải hệ phương trình:
Parabol: y = x2 - 4x + 2.
d) Ta có:
Parabol: y = 16x2 + 12x + 2 hoặc y = x2 - 3x + 2.
\(a\ne0\)
Từ điều kiện đề bài ta có hệ:
\(\left\{{}\begin{matrix}c=-1\\-\frac{b}{2a}=2\\\frac{4ac-b^2}{4a}=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}c=-1\\b=-4a\\-4a-b^2=0\end{matrix}\right.\) \(\Rightarrow b^2=b\Rightarrow\left[{}\begin{matrix}b=0\left(l\right)\\b=1\end{matrix}\right.\)
\(\Rightarrow a=-\frac{1}{4}\Rightarrow y=-\frac{1}{4}x^2+x-1\)
Từ điều kiện đề bài: (hiển nhiên a khác 0):
\(\left\{{}\begin{matrix}\dfrac{4ac-b^2}{4a}=-1\\a-b+c=7\\c=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}4a-b^2=-4a\\a-b=6\\c=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-6\right)^2-8a=0\\b=a-6\\c=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\left\{2;18\right\}\\b=a-6\\c=1\end{matrix}\right.\)
Có 2 parabol thỏa mãn: \(\left[{}\begin{matrix}y=2x^2-4x+1\\y=18x^2+12x+1\end{matrix}\right.\)
Theo đề, ta có hệ:
\(\left\{{}\begin{matrix}a\cdot0+b\cdot0+c=1\\-\dfrac{b}{2a}=\dfrac{1}{2}\\-\dfrac{b^2-4ac}{4a}=\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=1\\b=-2a\\-b^2-4a=3a\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}c=1\\b=-2a\\-4a^2-4a-3a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=1\\a=-\dfrac{7}{4}\\b=\dfrac{7}{2}\end{matrix}\right.\)