Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì parabol đi qua M(1; 5) nên tọa độ của M nghiệm đúng phương trình của parabol: 5 = a.12 + b.1 + 2.
Tương tự, với N(- 2; 8) ta có: 8 = a.(- 2)2 + b.(- 2) + 2
Giải hệ phương trình: ta được a = 2, b = 1.
Parabol có phương trình là: y = 2x2 + x + 2.
b) Giải hệ phương trình:
Parabol: y = x2 - x + 2.
c) Giải hệ phương trình:
Parabol: y = x2 - 4x + 2.
d) Ta có:
Parabol: y = 16x2 + 12x + 2 hoặc y = x2 - 3x + 2.
Lời giải
a)
a.1) Trục đối xứng y =1/4
a.2) giao trục tung A(0,-2)
a.3) giao trục hoành (\(\left(\Delta=17\right)\) \(B\left(\dfrac{1-\sqrt{17}}{4};0\right)\);\(C\left(\dfrac{1+\sqrt{17}}{4}\right)\)
b)
b.1) Trục đối xứng y =-1/4
b.2) giao trục tung A(0,2)
a.3) giao trục hoành \(\left(\Delta=17\right)\) \(B\left(\dfrac{-1-\sqrt{17}}{4};0\right)\);\(C\left(\dfrac{-1+\sqrt{17}}{4}\right)\)
a)
y(1) =a-4+c=\(-2\)\(\Rightarrow\) a+c=2
y(2)=4a-8+c=3 \(\Rightarrow\)4a+c=3
Trừ cho nhau\(\Rightarrow\)3a=1 \(\Rightarrow\)a=\(\dfrac{1}{3}\)\(\Rightarrow\) \(c=2-\dfrac{1}{3}=\dfrac{5}{3}\).
Vậy: \(y=\dfrac{1}{3}x^2-4x+\dfrac{5}{3}\).
b)
I(-2;1)\(\Rightarrow\dfrac{4}{2a}=-2\)\(\Leftrightarrow a=-1\).
y(-2) \(=-4+8+c=1\)\(\Rightarrow\) \(c=-3\)
Vậy: \(y=-x^2-4x-3\).
c)\(\dfrac{4}{2a}=-3\)\(\Leftrightarrow a=-\dfrac{2}{3}\)
\(y\left(-2\right)=-\dfrac{2}{3}.4+8+c=1\)\(\Leftrightarrow c=-\dfrac{13}{3}\)
Vậy: \(y=-\dfrac{2}{3}x^3-4x-\dfrac{13}{3}\).
\(y=ax+b\left(d\right)\)
1.
\(\left(d\right)\) đi qua \(C\left(4;-3\right)\Rightarrow4a+b=-3\)
\(\left(d\right)\) song song với \(y=-\frac{2}{3}x+1\Rightarrow\left\{{}\begin{matrix}a=-\frac{2}{3}\\b\ne1\end{matrix}\right.\)
Khi đó ta có \(\left\{{}\begin{matrix}4a+b=-3\\a=-\frac{2}{3}\\b\ne1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=-\frac{2}{3}\\b=-\frac{1}{3}\end{matrix}\right.\Rightarrow y=-\frac{2}{3}x-\frac{1}{3}\left(d\right)\)
2.
Ta có \(\left\{{}\begin{matrix}a+b=2\\a=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=0\\a=2\end{matrix}\right.\Rightarrow y=2x\left(d\right)\)
3.
Ta có \(\left\{{}\begin{matrix}4a+b=2\\a.\left(-\frac{1}{2}\right)=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-6\\a=2\end{matrix}\right.\Rightarrow y=2x-6\left(d\right)\)
Trục đối xứng của parabol là đường thẳng x = -b/(2a) => -b/(2a) = 5/6
=> b = -5/3 a (1)
đồ thị đia qua M(2,4) => 4 = a.22 + b,2 + 2
=> 4a + 2b = 2 (2)
Thay (1) vào (2):
4a - 10/3 a = 2
=> a = ...
=> b = -5/3 a
bài toán này chưa đủ dữ liệu để giải quyết bài toán nha bn
trong trường hợp này ( parabol có dạng \(ax^2+bx+c\) ) thì ta phải có :
(+) 3 điểm mà parabol đó đi qua (ở nhiều cách cho đề khác nhau)
(+) đỉnh I và 1 điểm mà nó đi qua .
nhưng bài này lại chỉ cho có 2 điểm mà nó đi qua thôi nên không thể nào làm được .
Đồ thị hàm số đi qua A(1;-4) nên ta có : a +b + c = 0 (1)
đồ thị hs tiếp xúc vs trục hoành tại x =3 ⇒ có trục đối xứng là x=3
⇒ \(\dfrac{-b}{2a}\) =3 ⇔ 6a+b=0 (2)
đồ thị hs tiếp xúc vs trục hoành tại x=3⇒ 9a+3b+c=0 (3)
từ (1)(2)(3) ⇒ \(\left\{{}\begin{matrix}a=-1\\b=6\\c=-9\end{matrix}\right.\)
=) y = -x2+6x-9
\(y=ax^2+bx-7\)đi qua điểm \(A\left(-1,-6\right)\)nên \(a-b-7=-6\Leftrightarrow a-b=1\)(1)
\(y=ax^2+bx-7\)có trục đối xứng \(x=-\frac{1}{3}\)nên \(\frac{-b}{2a}=-\frac{1}{3}\Leftrightarrow2a-3b=0\)(2)
Từ (1) và (2) suy ra \(\hept{\begin{cases}a=3\\b=2\end{cases}}\)
\(a^2-b^2=3^2-2^2=5\).
Câu 1: (P) : \(y=ax^2+bx+c\)
Vì (P) cắt trục Ox tại hai điểm có hoành độ lần lượt là -1 và 2
nên (P) cắt hai điểm A(-1;0) và B (2;0)
A (-1;0) ∈ (P) ⇔ 0 = a - b+c (1)
B (2;0) ∈ (P) ⇔ 0 = 4a+2b+c (2)
Mà (P) cắt trục Oy tại điểm có tung độ bằng -2
nên (P) cắt C ( 0;-2)
C (0;-2) ∈ (P) ⇔ -2 = c (3)
Từ (1) ,(2) và (3) ⇔ \(\left\{{}\begin{matrix}a-b+c=0\\4a+2b+c=0\\c=-2\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}a-b=2\\4a+2b=2\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}a=1\\b=-1\end{matrix}\right.\)
Vậy (P) : \(y=x^2-x-2\)
Câu 2: (P) : \(y=ax^2+bx+c\)
Vì (P) có đỉnh I ( -2;-1)
⇔ \(\left\{{}\begin{matrix}\dfrac{-b}{2a}=-2\\-1=4a-2b+c\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}-4a+b=0\\4a-2b+c=-1\end{matrix}\right.\)(1)
Mà (P) cắt trục tung tại điểm có tung độ bằng -3
nên (P) cắt A( 0;-3)
A(0;-3) ∈ (P) ⇔ -3 = c (2)
Từ (1) và (2) ⇔ \(\left\{{}\begin{matrix}-4a+b=0\\4a-2b+c=-1\\c=-3\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}-4a+b=0\\4a-2b=2\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}a=\dfrac{-1}{2}\\b=-2\end{matrix}\right.\)
Vậy (P) : \(y=\dfrac{-1}{2}x^2-2x-3\)
Điều kiện để (P): \(y=ax^2+bx+c\) cắt trục hoành tại hai điểm phân biệt là \(\Delta>0\).
Gọi \(x_1;x_2\) là hoành độ của hai giao điểm. Ta có:
\(x_{1,2}=\dfrac{-b\pm\sqrt{\Delta}}{2a}\);
Tọa độ giao điểm là:
\(A\left(\dfrac{-b+\sqrt{\Delta}}{2a};0\right)\); \(A\left(\dfrac{-b-\sqrt{\Delta}}{2a};0\right)\).