Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: (P) : \(y=ax^2+bx+c\)
Vì (P) cắt trục Ox tại hai điểm có hoành độ lần lượt là -1 và 2
nên (P) cắt hai điểm A(-1;0) và B (2;0)
A (-1;0) ∈ (P) ⇔ 0 = a - b+c (1)
B (2;0) ∈ (P) ⇔ 0 = 4a+2b+c (2)
Mà (P) cắt trục Oy tại điểm có tung độ bằng -2
nên (P) cắt C ( 0;-2)
C (0;-2) ∈ (P) ⇔ -2 = c (3)
Từ (1) ,(2) và (3) ⇔ \(\left\{{}\begin{matrix}a-b+c=0\\4a+2b+c=0\\c=-2\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}a-b=2\\4a+2b=2\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}a=1\\b=-1\end{matrix}\right.\)
Vậy (P) : \(y=x^2-x-2\)
Câu 2: (P) : \(y=ax^2+bx+c\)
Vì (P) có đỉnh I ( -2;-1)
⇔ \(\left\{{}\begin{matrix}\dfrac{-b}{2a}=-2\\-1=4a-2b+c\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}-4a+b=0\\4a-2b+c=-1\end{matrix}\right.\)(1)
Mà (P) cắt trục tung tại điểm có tung độ bằng -3
nên (P) cắt A( 0;-3)
A(0;-3) ∈ (P) ⇔ -3 = c (2)
Từ (1) và (2) ⇔ \(\left\{{}\begin{matrix}-4a+b=0\\4a-2b+c=-1\\c=-3\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}-4a+b=0\\4a-2b=2\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}a=\dfrac{-1}{2}\\b=-2\end{matrix}\right.\)
Vậy (P) : \(y=\dfrac{-1}{2}x^2-2x-3\)
Lời giải
a)
a.1) Trục đối xứng y =1/4
a.2) giao trục tung A(0,-2)
a.3) giao trục hoành (\(\left(\Delta=17\right)\) \(B\left(\dfrac{1-\sqrt{17}}{4};0\right)\);\(C\left(\dfrac{1+\sqrt{17}}{4}\right)\)
b)
b.1) Trục đối xứng y =-1/4
b.2) giao trục tung A(0,2)
a.3) giao trục hoành \(\left(\Delta=17\right)\) \(B\left(\dfrac{-1-\sqrt{17}}{4};0\right)\);\(C\left(\dfrac{-1+\sqrt{17}}{4}\right)\)
Vì (P) có trục đối xứng x = 1 => \(-\dfrac{b}{2a}=1\left(1\right)\)
Vì (P) đi qua A(2; 3) => với x = 2 thì y = 3 => 4a + 2b + c = 3 (2)
Vì (P0 cắt trục tung tại điểm có tung độ bằng 3 => Với x = 0 thì y = 3 => c = 3 (3)
Từ (1), (2), (3) ta có:
\(\left\{{}\begin{matrix}-\dfrac{b}{2a}=1\\4a+2b+c=3\\c=3\end{matrix}\right.\) => ...
=> xem lại đề @@
a) (P) cắt trục Ox tại điểm M(2;0) nên :
0=a.2^2+3.2-2=>a=-1
vậy (P): y=-x^2+3x-2
b) trục đối xứng x=-3 hay
\(-\dfrac{b}{2a}=-3\Leftrightarrow\dfrac{-3}{2a}=-3\Rightarrow a=\dfrac{1}{2}\\ \Rightarrow\left(P\right):y=\dfrac{1}{2}x^2+3x-2\)
c) có đỉnh I(-1/2;-11/4)=>
\(a.\left(-\dfrac{1}{2}\right)^2+3.\left(-\dfrac{1}{2}\right)-2=-\dfrac{11}{4}\Rightarrow a=3\Rightarrow\left(P\right):y=3x^2+3x-2\)
Do (P) cắt trục tung tại điểm có tung độ bằng 3 \(\Rightarrow c=3\)
\(\Rightarrow y=ax^2+bx+3\)
Mặt khác từ tọa độ đỉnh parabol ta có: \(\left\{{}\begin{matrix}-\frac{b}{2a}=-2\\-\frac{b^2-4ac}{4a}=-1\end{matrix}\right.\) và \(a\ne0\)
\(\Rightarrow\left\{{}\begin{matrix}b=4a\\b^2-12a=4a\end{matrix}\right.\)
Thay b từ trên xuống: \(16a^2-16a=0\)
\(\Rightarrow16a\left(a-1\right)=0\Rightarrow a=1\Rightarrow b=4\)
Vậy pt (P): \(y=x^2+4x+3\)
1/ \(\left\{{}\begin{matrix}a=2\\a.0+b=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\) \(\Rightarrow y=2x+1\)
2/ \(\left\{{}\begin{matrix}a.3=-1\\a.3+b=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{1}{3}\\b=1\end{matrix}\right.\) \(\Rightarrow y=-\frac{1}{3}x+1\)
3/ Tọa độ 2 giao điểm \(A\left(-2;1\right)\) và \(B\left(2;-2\right)\)
\(\Rightarrow\left\{{}\begin{matrix}-2a+b=1\\2a+b=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{3}{4}\\b=-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow y=-\frac{3}{4}x-\frac{1}{2}\)
Đáp án D