Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(\text{ƯCLN( n+8 ; 2n+5 )}\) \(=d\left(d\in\text{N*}\right)\)
\(\Rightarrow\) \(\left\{{}\begin{matrix}\text{n + 8 ⋮ d}\\\text{2n - 5 ⋮ d}\end{matrix}\right.\)
\(\Rightarrow\) \(\left\{{}\begin{matrix}\text{2n + 16 ⋮ d}\\\text{2n - 5 ⋮ d}\end{matrix}\right.\)
\(\Rightarrow\) \(\text{2n + 16 – (2n-5) ⋮ d}\)
\(\Rightarrow\text{21 ⋮ d }\)
\(\Rightarrow\) \(\text{d }\in\left\{\text{1 ; 3 ; 7}\right\}\)
Nếu \(\text{d = 3}\)
\(\Rightarrow\) \(\text{n+8 ⋮ 3}\)
\(\Rightarrow\) \(\text{n + 8 = 3k ( k ∈ N*)}\)
\(\Rightarrow\) \(\text{n = 3k – 8}\)
\(\Rightarrow\) \(\text{2n – 5 = 2(3k – 8) – 5 = 6k – 16 – 5 = 6k – 21 = 3(2k – 7) ⋮ 3}\)
Vậy n khác \(\text{2k – 7}\) thì \(\text{n+8/2n -5}\) tối giản
Gọi \(ƯCLN\)(n+8 và 2n-5) là d
\(\Rightarrow\int^{n+8}_{2n-5}\) chia hết cho d
\(\Rightarrow\int^{2\left(n+8\right)}_{1\left(2n-5\right)}\) chia hết cho d
\(\Rightarrow\int^{2n+16}_{2n-5}\) chia hết cho d
\(\Rightarrow2n+16-\left(2n-5\right)\)chia hết cho d
\(\Rightarrow2n+16-2n+5\) chia hết cho d
\(\Rightarrow11\) chai hết cho d \(\in\) \(ƯCLN\)\(\left(11\right)=\left\{+-11,+-1\right\}\)
Rồi bạn lập bảng tính như thường, chúc bạn học tốt!
mik thì trúng đề thì có con này, mik ko bt làm những thầy cô giáo mik bảo có vô số n thuộc n để p/s tối giản
Ta thấy các phân số đã cho có dạng :
\(\frac{5}{5}+(n+3);\frac{6}{6}(n+3);...;\frac{17}{17}(n+3)\)
Tức là có dạng \(\frac{a}{a}+(n+3)\)
Để các phân số đã cho tối giản thì a và n + 3 phải nguyên tố cùng nhau
n + 3 phải nhỏ nhất và nguyên tố cùng nhau với các số 5;6;7;...;17
n + 3 phải là số nguyên tố nhỏ nhất lớn hơn 17
n + 3 = 19
=> n = 16
Vậy n = 16
n=0 chắc chắn đó nha