Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Đặt k, ta có:
x/2=k =>2k=x; y/3=k =>3k=y; z/5=k =>5k=z
thay x/2=k =>2k=x; y/3=k =>3k=y; z/5=k =>5k=z vào x2+y2+z2=152, tao có:
(2k)2+(3k)2+(5k)2=152
=>4xk2+9xk2+25xk2=152
=>k2x38=152
=>k2=4=>k=2 hoặc k=-2
Với k=2
=>x=4;y=6;z=10
Với k=-2
=>x=-4;y=-6;z=-10
Vậy (x=4;y=6;z=10) hoặc (x=-4;y=-6;z=-10)
b)Áp dụng dãy tỉ số bằng nhau, ta có :
x/4=y/7=z/9=(2x)/8=(2x-y)/8-7=2
=>x=8;y=14;z=18
Vậy........
Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{2}=k\)
\(\Rightarrow x=3k;y=4k;z=2k\)
Mà \(x^3-y^3+z^3=-29\)
\(\Rightarrow\left(3k\right)^3-\left(4k\right)^3+\left(2k\right)^3=-29\)
\(\Rightarrow27k^3-64k^3+8k^3=-29\)
\(\Rightarrow-29k^3=-29\)
\(\Rightarrow k^3=1\)
\(\Rightarrow k=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\\z=2\end{matrix}\right.\)
#DatNe
Ta có:\(\frac{x}{y}=\frac{9}{7}\Rightarrow\frac{x}{9}=\frac{y}{7}\left(1\right)\)
\(\frac{y}{z}=\frac{7}{3}\Rightarrow\frac{y}{7}=\frac{z}{3}\left(2\right)\)
Từ (1) và (2) suy ra:\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau ta đc:
\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=-\frac{15}{5}=-3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{9}=-5\\\frac{y}{7}=-5\\\frac{z}{3}=-5\end{cases}\Rightarrow\hept{\begin{cases}x=-45\\y=-35\\z=-15\end{cases}}}\)
Ta có:
\(\frac{x}{y}=\frac{9}{7}\)=> \(\frac{x}{9}=\frac{y}{7}\)(1)
\(\frac{y}{z}=\frac{7}{3}\)=>\(\frac{y}{7}=\frac{z}{3}\)(2)
Từ (1) (2)
=>\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=-\frac{15}{5}=-3\)
=>\(\frac{x}{9}=-3\)=>x=-27
\(\frac{y}{7}=-3\)=>y=-21
\(\frac{z}{3}=-3\)=>z=-9
Vậy x=-27 ; y=-21 ; z=-9
Theo đầu bài ra ta có :
x/3=y/4=z/2=x^3/27= x^3/64= z^3/8 và x^3-y^3+z^3 =-29
áp dụng tc dãy tỉ số = nhau nên ta có :
x^3/27=z^3/64= z^3/8=x^3-y^3+z^3/ 27-64+8=-29/-29=1
x/3=1 => x=3
y/4=1=>x=4
x/2=1=>x=2
vậy x=3 ; y=4 ;z=2
CHUK BẠN LÀM BÀI TỐT NHA
a, \(=-91x-y+5z\)
b, \(=4x^2+x^2y-5y^2-\dfrac{5}{3}x^3+6xy^2+x^2y\)
\(=4x^2+2x^2y-5y^2-\dfrac{5}{3}x^3+6xy^2\)
\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{2}\)
\(\Rightarrow\dfrac{x^3}{125}=\dfrac{y^3}{64}=\dfrac{z^3}{8}=\dfrac{x^3-y^3+z^3}{125-64+8}=\dfrac{69}{69}=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=\sqrt[3]{125}=5\\y=\sqrt[3]{64}=4\\z=\sqrt[3]{8}=2\end{matrix}\right.\)
Anh giúp luôn !
\(\frac{x}{3}=\frac{y}{2}=\frac{z}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{4}=\frac{z^2}{16}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{9}=\frac{y^2}{4}=\frac{z^2}{16}=\frac{y^2-x^2+2z^2}{9-4+2\times16}=\frac{108}{27}=4\)
\(\Rightarrow x=6hayx=-6\)
\(\Rightarrow y=4hayy=-4\)
\(\Rightarrow z=8hayz=-8\)
Đề thiếu rồi bạn.