K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2021

`(x+5)/(x^2-5x)-(x-5)/(2x^2+10x)=(x+25)/(2x^2-50)`

ĐK:`x ne 0,x ne 5,x ne -5`

Nhân 2 vế với `2x(x+5)(x-5)` ta có phương trình:

`2(x+5)(x+5)-(x-5)(x-5)=x(x+25)`

`<=>2(x^2+10x+25)-(x^2-10x+25)=x^2+25x`

`<=>x^2+30x+25=x^2+25x`

`<=>5x+25=0`

`<=>5x=-25`

`<=>x=-5(l)`

Vậy pt vô nghiệm

19 tháng 7 2021

\(\dfrac{x+5}{x^2-5x}-\dfrac{x-5}{2x^2+10x}=\dfrac{x+25}{2x^2-50}\)

 \(\dfrac{x+5}{x\left(x-5\right)}-\dfrac{x-5}{2x\left(x+5\right)}=\dfrac{x+5}{2\left(x-5\right)\left(x+5\right)}\)

dkxd : x ≠ 0

          x ≠ 5

          x ≠ -5

MTC : 2x(x - 5)(x + 5)

Quy đồng mẫu thức hai vế của phương trình :

⇒ \(\dfrac{2\left(x-5\right)\left(x+5\right)}{2x\left(x-5\right)\left(x+5\right)}-\dfrac{\left(x-5\right)\left(x+5\right)}{2x\left(x-5\right)\left(x+5\right)}\) = \(\dfrac{x\left(x+25\right)}{2x\left(x-5\right)\left(x+5\right)}\)

Suy ra : 2(x - 5)(x + 5) - (x - 5)(x + 5) = x(x + 25)

         \(\Leftrightarrow\) 2(x2 - 25) - (x2 - 25) = x2 + 25x

         \(\Leftrightarrow\) 2x2 - 50 - x2 + 25 - x2 - 25x = 0

        \(\Leftrightarrow\) -25 - 25x = 0

        \(\Leftrightarrow\) -25x = 25

        \(\Leftrightarrow\) x = \(\dfrac{25}{-25}=-1\) (thỏa mãn)

 Vậy S = \(\left\{-1\right\}\)

 Chúc bạn học tốt

 

Ta có: \(\dfrac{x+5}{x^2-5x}-\dfrac{x-5}{2x^2+10x}=\dfrac{x+25}{2x^2-50}\)

\(\Leftrightarrow\dfrac{2\left(x+5\right)^2}{2x\left(x+5\right)\left(x-5\right)}-\dfrac{\left(x-5\right)^2}{2x\left(x+5\right)\left(x-5\right)}=\dfrac{x\left(x+25\right)}{2x\left(x+5\right)\left(x-5\right)}\)

Suy ra: \(2\left(x^2+10x+25\right)-\left(x^2-10x+25\right)=x^2+25x\)

\(\Leftrightarrow2x^2+20x+50-x^2+10x-25-x^2-25x=0\)

\(\Leftrightarrow15x+25=0\)

\(\Leftrightarrow15x=-25\)

hay \(x=-\dfrac{5}{3}\)(thỏa ĐK)

26 tháng 5 2021

\(x\ne0;x\ne\pm5\)

PT \(\Leftrightarrow\dfrac{x+25}{2\left(x+5\right)\left(x-5\right)}-\dfrac{x+5}{x\left(x-5\right)}+\dfrac{x-5}{2x\left(x+5\right)}=0\)

\(\Rightarrow x^2+25x-2x^2-20x-50+x^2-10x+25=0\)

\(\Leftrightarrow-5x-25=0\)

\(\Leftrightarrow x=-5\) (ktm)
Vậy pt vô nghiệm.

26 tháng 5 2021

ĐKXĐ: \(\left\{{}\begin{matrix}x\ne0\\x\ne\pm5\end{matrix}\right.\).

\(PT\Leftrightarrow\dfrac{x+25}{2\left(x-5\right)\left(x+5\right)}-\dfrac{x+5}{x\left(x-5\right)}=\dfrac{5-x}{2x\left(x+5\right)}\)

\(\Leftrightarrow\dfrac{x\left(x+25\right)}{2x\left(x-5\right)\left(x+5\right)}-\dfrac{2\left(x+5\right)^2}{2x\left(x-5\right)\left(x+5\right)}=\dfrac{\left(5-x\right)\left(x-5\right)}{2x\left(x-5\right)\left(x+5\right)}\)

\(\Rightarrow x\left(x+25\right)-2\left(x+5\right)^2=\left(5-x\right)\left(x-5\right)\)

\(\Leftrightarrow x^2+25x-2\left(x^2+10x+25\right)=10x-x^2-25\)

\(\Leftrightarrow-5x=25\Leftrightarrow x=-5\) (loại)

Vậy PT vô nghiệm

 

 

ĐKXĐ: \(x\notin\left\{0;5;-5\right\}\)

Ta có: \(\frac{x+5}{x^2-5x}-\frac{x-5}{2x^2+10x}=\frac{x+25}{2x^2-50}\)

\(\Leftrightarrow\frac{x+5}{x\left(x-5\right)}-\frac{x-5}{2x\left(x+5\right)}=\frac{x+25}{2\left(x+5\right)\left(x-5\right)}\)

\(\Leftrightarrow\frac{2\left(x+5\right)\left(x+5\right)}{2x\left(x-5\right)\left(x+5\right)}-\frac{\left(x-5\right)^2}{2x\left(x-5\right)\left(x+5\right)}=\frac{x\left(x+25\right)}{2x\left(x+5\right)\left(x-5\right)}\)

Suy ra: \(2\left(x+5\right)^2-\left(x-5\right)^2=x\left(x+25\right)\)

\(\Leftrightarrow2\left(x^2+10x+25\right)-\left(x^2-10x+25\right)=x^2+25x\)

\(\Leftrightarrow2x^2+20x+50-x^2+10x-25-x^2-25x=0\)

\(\Leftrightarrow5x+25=0\)

\(\Leftrightarrow5x=-25\)

hay x=-5(ktm)

Vậy: Tập nghiệm \(S=\varnothing\)

ĐKXĐ: \(x\notin\left\{0;5;-5\right\}\)

Ta có: \(\frac{x+25}{2x^2-50}-\frac{x+5}{x^2-5x}=\frac{5-x}{2x^2+10x}\)

\(\Leftrightarrow\frac{x\left(x+25\right)}{2x\left(x+5\right)\left(x-5\right)}-\frac{2\left(x+5\right)^2}{2x\left(x-5\right)\left(x+5\right)}+\frac{\left(x-5\right)^2}{2x\left(x+5\right)\left(x-5\right)}=0\)

Suy ra: \(x^2+25x-2\left(x^2+10x+25\right)+x^2-10x+25=0\)

\(\Leftrightarrow2x^2+15x+25-2x^2-20x-50=0\)

\(\Leftrightarrow-5x-25=0\)

\(\Leftrightarrow-5x=25\)

hay x=-5(loại)

Vậy: \(S=\varnothing\)

26 tháng 4 2019

ĐKXĐ : \(x\ne0;x\ne\pm5\)

\(\frac{x+5}{x^2-5x}-\frac{x-5}{2x^2+10x}=\frac{x+25}{2x^2-50}\)

\(\Leftrightarrow\frac{x+5}{x\left(x-5\right)}-\frac{x-5}{2x\left(x+5\right)}=\frac{x+25}{2\left(x-5\right)\left(x+5\right)}\)

\(\Leftrightarrow\frac{2\left(x+5\right)^2}{2x\left(x-5\right)\left(x+5\right)}-\frac{\left(x-5\right)^2}{2x\left(x-5\right)\left(x+5\right)}=\frac{x\left(x+25\right)}{2x\left(x-5\right)\left(x+5\right)}\)

\(\Rightarrow2\left(x+5\right)^2-\left(x-5\right)^2=x\left(x+25\right)\)

\(\Leftrightarrow2x^2+20x+50-x^2+10x-25=x^2+25x\)

\(\Leftrightarrow5x+25=0\)

\(\Leftrightarrow x=-5\)(ko t/m ĐKXĐ)

Vậy phương trình vô nghiệm.

4 tháng 4 2020

errrrr

a) \(\dfrac{1}{3x-2}-\dfrac{1}{3x+2}-\dfrac{3x-6}{9x^2-4}\)

\(=\dfrac{3x+2-3x+2-3x+6}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{-3x+10}{\left(3x-2\right)\left(3x+2\right)}\)

b) \(\dfrac{x+25}{2x^2-50}-\dfrac{x+5}{x^2-5x}-\dfrac{5-x}{2x^2+10x}\)

\(=\dfrac{x+25}{2\left(x-5\right)\left(x+5\right)}-\dfrac{x+5}{x\left(x-5\right)}+\dfrac{x-5}{2x\left(x+5\right)}\)

\(=\dfrac{x^2+25x-2\left(x+5\right)^2+\left(x-5\right)^2}{2x\left(x-5\right)\left(x+5\right)}\)

\(=\dfrac{x^2+25x-2x^2-20x-50+x^2-10x+25}{2x\left(x-5\right)\left(x+5\right)}\)

\(=\dfrac{-5x-25}{2x\left(x-5\right)\left(x+5\right)}\)

\(=\dfrac{-5\left(x+5\right)}{2x\left(x-5\right)\left(x+5\right)}=\dfrac{-5}{2x\left(x-5\right)}\)

 

c) Ta có: \(\dfrac{1-2x}{2x}-\dfrac{4x}{2x-1}-\dfrac{3}{2x-4x^2}\)

\(=\dfrac{-\left(2x-1\right)^2-8x^2+3}{2x\left(2x-1\right)}\)

\(=\dfrac{-\left(4x^2-4x+1\right)-8x^2+3}{2x\left(2x-1\right)}\)

\(=\dfrac{-4x^2+4x-1-8x^2+3}{2x\left(2x-1\right)}\)

\(=\dfrac{-12x^2+4x+2}{2x\left(2x-1\right)}\)