K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 1

\(\dfrac{x}{3}=\dfrac{y}{4}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}\)

\(\dfrac{y}{5}=\dfrac{z}{7}\Rightarrow\dfrac{y}{20}=\dfrac{z}{28}\)

\(\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x}{30}+\dfrac{3y}{60}+\dfrac{-z}{-28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{-124}{62}=-2\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=-2\\\dfrac{y}{20}=-2\\\dfrac{z}{28}=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=15.\left(-2\right)=-30\\y=20.\left(-2\right)=-40\\z=28.\left(-2\right)=-56\end{matrix}\right.\)

16 tháng 1

Ta có: \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x}{15}=\dfrac{y}{20}\left(1\right)\)

\(\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{y}{20}=\dfrac{z}{28}\left(2\right)\)

Từ (1) và (2) suy ra:

\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\Rightarrow\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{-124}{62}=-2\)

Do đó:

\(\dfrac{x}{15}=-2\Rightarrow x=15.\left(-2\right)=-30\)

\(\dfrac{y}{20}=-2\Rightarrow y=20.\left(-2\right)=-40\)

\(\dfrac{z}{28}=-2\Rightarrow z=28.\left(-2\right)=-56\)

Vậy x = -30; y = -40; z = -56.

\(#Tmiamm\)

 

16 tháng 1 2016

Bạn áp dụng tính chất dãy tỉ số bằng nhau đi :)

7 tháng 7 2016

Đơn giản mà bạn

Ta có: \(\dfrac{x}{3}=\dfrac{y}{4}\)

nên \(\dfrac{x}{15}=\dfrac{y}{20}\)(1)

Ta có: \(\dfrac{y}{5}=\dfrac{z}{7}\)

nên \(\dfrac{y}{20}=\dfrac{z}{28}\)(2)

Từ (1) và (2) suy ra \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)

\(\Leftrightarrow\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}\)

mà 2x+3y-z=124

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{124}{62}=2\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{15}=2\\\dfrac{y}{20}=2\\\dfrac{z}{28}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=30\\y=40\\z=56\end{matrix}\right.\)

\(\dfrac{x}{3}=\dfrac{x}{4}\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{20}\\ \dfrac{y}{5}=\dfrac{z}{7}\Leftrightarrow\dfrac{y}{20}=\dfrac{z}{28}\)

\(\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x+3y-z}{2.15+3.20-28}=\dfrac{125}{62}=2\)

\(\Rightarrow\left\{{}\begin{matrix}x=15.2=30\\y=20.2=40\\z=28.2=56\end{matrix}\right.\)

\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\);  \(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)

=> \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{2.15+3.20-28}=\frac{124}{62}=2\)

=> x = 2.15 = 30; y = 2.20 = 40; z = 2.28 = 56

20 tháng 8 2019

\(\Rightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\)

\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

\(\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)

+ Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{124}{62}=2\)

Suy ra \(\frac{2x}{30}=2\Rightarrow x=30\)

              \(\frac{3y}{60}=2\Rightarrow y=40\)

                 \(\frac{z}{28}=2\Rightarrow z=56\)

         Vậy \(x=30;y=40;z=56\)

       Chúc bạn học tốt !!!

20 tháng 8 2019

ta có: \(\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\)

  => \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

  Dựa vào tính chất dãy tỉ số bằng nhau ta có:

   \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{124}{62}=2\)

  + \(\frac{x}{15}=2=>\frac{x}{15}=\frac{30}{15}=>x=30\)

   + \(\frac{y}{20}=2=>\frac{y}{20}=\frac{40}{20}=>y=40\)

   + \(\frac{z}{28}=2=>\frac{z}{28}=\frac{56}{28}=>z=56\)

15 tháng 9 2021

Bài 2:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)\(x+y+z=49\)

Áp dụng tính chất của dãy tỷ số bằng nhau

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{49}{10}\)

\(\Rightarrow\hept{\begin{cases}x=2.\frac{49}{10}=\frac{49}{5}\\y=3.\frac{49}{10}=\frac{147}{10}\\x=5.\frac{49}{10}=\frac{49}{2}\end{cases}}\)

15 tháng 9 2021

\(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7};2x+3y-z=124\)

Ta có:

\(\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\)

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x}{30}=\frac{3y}{60}\)

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{124}{62}=2\)

\(\Rightarrow\hept{\begin{cases}x=15.2=30\\y=20.2=40\\z=28.2=56\end{cases}}\)

27 tháng 5 2015

a/          5x +y -2x = 28 => 3x +y = 28

       x/10 = y/6 = z/21 = 3x /30= y/6 = 3x +y  /  36 = 28 /36 = 7/9

=> x= 70/9 ; y = 14/3 ; z= 49/3

b/

          x/3 = y/4 => x/15 = y/20 [1]

        y/5 = z/7 => y/20 = z/28  [2]

Từ [1] và [2] => x/15 = y/20 = z/28 = 2x /30 = 3y/60 = z/28 = [2x +3y - z] / [30+60-28]= 124 /62 = 2

=> x= 2 .15 = 30 ; y = 2x20 = 40 ; z= 2 . 28= 56

1 tháng 8 2016

dễ mà bạn nhưng dài mk ko muốn viết

1 tháng 8 2016

sao vậy giúp mình đi

19 tháng 6 2016

\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\) (1)

\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{x}{28}\) (2)

Từ (1) và (2) => \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x}{30}=\frac{3y}{60}=\frac{x}{28}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x}{30}=\frac{3y}{60}=\frac{x}{28}=\frac{2x+3y-z}{30+60-28}=\frac{124}{62}=2\)

=>x=2.15=30

    y=2.20=40

    z=2.28=56

Vậy...

a; Ta có: 2x=3y

nên x/3=y/2

=>x/21=y/14

Ta có: 5y=7z

nên y/7=z/5

=>y/14=z/10

=>x/21=y/14=z/10

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}=\dfrac{3x-7y+5z}{3\cdot21-7\cdot14+5\cdot10}=\dfrac{30}{15}=2\)

Do đó: x=42; y=28; z=20

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{11}{6}}=\dfrac{y}{\dfrac{2}{9}}=\dfrac{z}{\dfrac{5}{18}}=\dfrac{-x+y+z}{-\dfrac{11}{6}+\dfrac{2}{9}+\dfrac{5}{18}}=\dfrac{-120}{-\dfrac{4}{3}}=90\)

Do đó: x=165; y=20; z=25

c: x/3=y/4

nên x/15=y/20

y/5=z/7

nên y/20=z/28

=>x/15=y/20=z/28

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x+3y-z}{2\cdot15+3\cdot20-28}=\dfrac{124}{62}=2\)

Do đó: x=30; y=40; z=56