Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. x^2 -x-y^2-y= ( x^2-y^2) - ( x+y)= (x+y).(x-y) - ( x+y)= (x+y). ( x-y-1)
2. x^2-y^2+x-y= (x-y).(x+y) + (x-y)= (x-y).(x+y+1)
3. 3x-3y+x^2-y^2= 3.(x-y) + (x-y).(x+y)= (x-y).(3+x+y)
\(1,x^2-x-y^2-y\\ =\left(x-y\right)\left(x+y\right)-\left(x+y\right)\\ =\left(x+y\right)\left(x-y-1\right)\\ 2,x^2-y^2+x-y\\ =\left(x-y\right)\left(x+y\right)+\left(x-y\right)\\ =\left(x-y\right)\left(x+y+1\right)\\ 2,3x-3y+x^2-y^2\\ =3\left(x-y\right)+\left(x-y\right)\left(x+y\right)\\ =\left(x-y\right)\left(x+y+3\right)\)
\(=3\left(x-y\right)+\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y\right)\left(x+y+3\right)\)
\(=3\left(x-y\right)+\left(x-y\right)\left(x+y\right)=\left(x-y\right)\left(x+y+3\right)\)
\(x^3+y^3-3x-3y=\left(x+y\right)\left(x^2-xy+y^2\right)-3\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2-3\right)\)
\(x^3+y^3-3x-3y\)
<=> \( \left(x+y\right)\left(x^2-xy+y^2\right)-3\left(x+y\right)\)
<=>\(\left(x+y\right)\left(x^2+y^2-xy-3\right)\)
e) \(8\left(x+3y\right)-16x\left(x+3y\right)=\left(x+3y\right)\left(8-16x\right)=8\left(x+3y\right)\left(1-2x\right)\)
f) \(4x^2\left(x+1\right)+2x^2\left(x+1\right)=\left(x+1\right)\left(4x^2+2x^2\right)=6x^2\left(x+1\right)\)
g) \(3\left(x-y\right)-5x\left(y-x\right)=3\left(x-y\right)+5x\left(x-y\right)=\left(3+5x\right)\left(x-y\right)\)
a) x⁴ - y⁴
= (x²)² - (y²)²
= (x² - y²)(x² + y²)
= (x - y)(x + y)(x² + y²)
b) 1 - 8x³y⁶
= 1³ - (2xy²)³
= (1 - 2xy²)(1 + 2xy² + 4x²y⁴)
a: \(x^2-y^2+3x+3y\)
\(=\left(x^2-y^2\right)+\left(3x+3y\right)\)
\(=\left(x-y\right)\left(x+y\right)+3\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y+3\right)\)
b: Sửa đề: \(x^2-4y^2+4x+4\)
\(=\left(x^2+4x+4\right)-4y^2\)
\(=\left(x+2\right)^2-\left(2y\right)^2\)
\(=\left(x+2+2y\right)\left(x+2-2y\right)\)
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
\(x^3y+x+y+1\\=(x^3y+y)+(x+1)\\=y(x^3+1)+(x+1)\\=y(x+1)(x^2-x+1)+(x+1)\\=(x+1)[y(x^2-x+1)+1]\\=(x+1)(x^2y-xy+y+1)\)