K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2021

Thiếu đề rồi!

11 tháng 10 2021

Đề sai rồi bạn

NM
12 tháng 8 2021

a. ta có : \(x^2+y^2=\left(x+y\right)^2-2xy=1^2-2\times\left(-6\right)=13\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=1^3-3\times\left(-6\right)\times1=19\)

\(x^5+y^5=\left(x+y\right)\left[x^4-x^3y+x^2y^2-xy^3+y^4\right]\)

\(=\left(x+y\right)\left[\left(x^2+y^2\right)^2-x^2y^2-xy\left(x^2+y^2\right)\right]=1.\left(13^2-\left(-6\right)^2-\left(-6\right).13\right)=211\)

b.\(x^2+y^2=\left(x-y\right)^2+2xy=1+2\times6=13\)

\(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=1^3+6.3.1=19\)

\(x^5-y^5=\left(x-y\right)\left[\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\right]\)

\(=\left(x-y\right)\left[\left(x^2+y^2\right)^2-x^2y^2+xy\left(x^2+y^2\right)\right]=1.\left(13^2-6^2+6.13\right)=211\)

8 tháng 8 2017

(x+y)^2  =a^2

x^2 +2xy +y^2 =a^2

x^2+y^2 =a^2-2xy =a^2 -2b

x^3 +y^3 = (x+y)(x^2 -xy +y^2)

             =a(a^2-2b-b)

            =a(a^2-3b)

            =a^3- 3ab

(x^2 +y^2)^2=(a^2-2b)^2  ( cái này tính cho x^4 + y^4)

tương tự như câu đầu tiên 

x^5+ y^5 (cái đó mình không biết)

8 tháng 8 2017

sai con khi

11 tháng 9 2016

a ) \(x^2-2xy+y^2-1\)

\(=\left(x-y\right)^2-1\)

\(=\left(-3\right)^2-1\)

\(=9-1\)

\(=8\)

b ) \(x^2+y^2\)

\(=x^2-20+y^2+20\)

\(=x^2-2.10+y^2+20\)

\(=x^2-2xy+y^2+20\)

\(=\left(x-y\right)^2+20\)

\(=\left(-3\right)^2+20\)

\(=29\)

11 tháng 9 2016

a) \(x^2-2xy+y^2=\left(x-y\right)^2=\left(-3\right)^2=9\)

b) Có: \(x^2-2xy+y^2=9\)

=> \(x^2+y^2=9+2xy=9+2\cdot10=9+20=29\)

23 tháng 7 2018

Bài 2:

\(M=x^2-2xy+y^2=\left(x-y\right)^2=\left(-3\right)^2=9\)

\(N=x^2+y^2=\left(x-y\right)^2+2xy=9+2.10=29\)

\(P=x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3=\left(-3\right)^3=-27\)

\(Q=x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=\left(-3\right)^3+3.10.\left(-3\right)=-117\)

23 tháng 7 2018

Bài 1:

a)  \(A=x^2+2xy+y^2=\left(x+y\right)^2=\left(-1\right)^2=1\)

b)  \(B=x^2+y^2=\left(x+y\right)^2-2xy=\left(-1\right)^2-2.\left(-12\right)=25\)

c)  \(C=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3=\left(-1\right)^3=-1\)

d)  \(D=x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=\left(-1\right)^3-3.\left(-12\right).\left(-1\right)=-37\)

30 tháng 8 2017

Câu 1:
\(\left(x+y\right)^2+3\left(x+y\right)-10\)
\(=\left(x+y\right)^2+3\left(x+y\right)+2,25-12,25\)
\(=\left(x+y+1,5\right)^2-3,5^2\)
\(=\left(x+y+1,5+3,5\right)\left(x+y+1,5-3,5\right)\)
\(=\left(x+y+5\right)\left(x+y-2\right)\)

Câu 2:
\(2x^2-y^2+xy\)
\(=2x^2-y^2+2xy-xy\)
\(=\left(2x^2+2xy\right)-\left(xy+y^2\right)\)
\(=2x\left(x+y\right)-y\left(x+y\right)\)
\(=\left(2x-y\right)\left(x+y\right)\)

Câu 3:
\(x^{64}+x^{32}+1\)
\(=x^{64}+2x^{32}+1-x^{32}\)
\(=\left(x^{32}+1\right)^2-\left(x^{16}\right)^2\)
\(=\left(x^{32}+1+x^{16}\right)\left(x^{32}+1-x^{16}\right)\)
\(=\left(x^{32}+x^{16}+1\right)\left(x^{32}-x^{16}+1\right)\)

Câu 4:
\(x^2+3cd\left(2-3cd\right)-10xy-1+25y^2\)
\(=x^2+25y^2-10xy+6cd-\left(3cd\right)^2-1\)
\(=\left(x^2+25y^2-10xy\right)-\left(\left(3cd\right)^2+1-6cd\right)\)
\(=\left(x+5y\right)^2-\left(3cd-1\right)^2\)
\(=\left(\left(x+5y\right)+\left(3cd-1\right)\right)\cdot\left(\left(x+5y\right)-\left(3cd-1\right)\right)\)
\(=\left(x+5y+3cd-1\right)\left(x+5y-3cd+1\right)\)