Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. $-x^2-2x-8=-7-(x^2+2x+1)=-7-(x+1)^2$
Vì $(x+1)^2\geq 0$ với mọi $x\in\mathbb{R}$ nên
$-x^2-2x-8=-7-(x+1)^2\leq -7< 0$ với mọi $x\in\mathbb{R}$
Vậy biểu thức luôn nhận giá trị âm với mọi $x$
b.
$-x^2-5x-11=-11+2,5^2-(x^2+5x+2,5^2)< -11+3^2-(x+2,5)^2$
$=-2-(x+2,5)^2\leq -2< 0$ với mọi $x\in\mathbb{R}$ (đpcm)
c.
$-4x^2-4x-2=-1-(4x^2+4x+1)=-1-(2x+1)^2\leq -1< 0$ với mọi $x\in\mathbb{R}$ (đpcm)
d.
$-9x^2+6x-7=-6-(9x^2-6x+1)=-6-(3x-1)^2\leq -6< 0$ với mọi $x\in\mathbb{R}$ (đpcm)
\(4A-3x^2+7-6x=x^2+3A-4x-3\)
\(\Rightarrow4A-3A=\left(x^2+3x^2\right)-\left(4x-6x\right)-\left(3+7\right)\)
\(\Rightarrow A=4x^2-\left(-2x\right)-10\)
\(\Rightarrow A=4x^2+2x-10\)
M(x)=x^2-6x+15
=x^2-6x+9+6
=(x-3)^2+6>=6>0 với mọi x
=>M(x) ko có nghiệm
a và b chắc của lớp 9 nhỉ
\(x^2-2x+2=x^2-x-x+2\)
\(=x\left(x-1\right)-\left(x-1\right)+1\)
\(=\left(x-1\right)^2+1\)
\(9x^2-6x+5=9\left(x^2-\frac{2}{3}x+\frac{5}{9}\right)\)
\(=9\left(x^2-\frac{1}{3}x-\frac{1}{3}x+\frac{5}{9}\right)\)
\(=9\left(x^2-\frac{1}{3}x-\frac{1}{3}x+\frac{1}{9}+\frac{4}{9}\right)\)
\(=9\left[x\left(x-\frac{1}{3}\right)-\frac{1}{3}\left(x-\frac{1}{3}\right)+\frac{4}{9}\right]\)
\(=9\left[\left(x-\frac{1}{3}\right)^2+\frac{4}{9}\right]\)
\(=9\left(x-\frac{1}{3}\right)^2+4\)
Cái kia tương tự.
\(M=\left[\left(\dfrac{2}{193}-\dfrac{3}{386}\right)\cdot\dfrac{193}{17}+\dfrac{33}{34}\right]:\left[\left(\dfrac{7}{2001}+\dfrac{11}{4002}\right)\cdot\dfrac{2001}{25}+\dfrac{9}{2}\right]\)
\(M=\left[\left(\dfrac{4}{386}-\dfrac{3}{386}\right)\cdot\dfrac{193}{17}+\dfrac{33}{34}\right]:\left[\left(\dfrac{14}{4002}+\dfrac{11}{4002}\right)\cdot\dfrac{2001}{25}+\dfrac{9}{2}\right]\)
\(M=\left(\dfrac{1}{386}\cdot\dfrac{193}{17}+\dfrac{33}{34}\right):\left(\dfrac{25}{4002}\cdot\dfrac{2001}{25}+\dfrac{9}{2}\right)\)
\(M=\left(\dfrac{1}{34}+\dfrac{33}{34}\right):\left(\dfrac{1}{2}+\dfrac{9}{2}\right)\)
\(M=1:5\)
\(M=\dfrac{1}{5}\)
\(=\left[\dfrac{4-3}{386}\cdot\dfrac{193}{17}+\dfrac{33}{34}\right]:\left[\dfrac{25}{4002}\cdot\dfrac{2001}{25}+\dfrac{9}{2}\right]\)
\(=\left(\dfrac{1}{34}+\dfrac{33}{34}\right):\left[\dfrac{1}{2}+\dfrac{9}{2}\right]\)
=1/5
Câu 3:
a: Xét ΔABC có AB<BC
nên \(\widehat{ACB}< \widehat{BAC}\)
b: Xét ΔABM có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔABM cân tại A
mà \(\widehat{B}=60^0\)
nên ΔABM đều
\(x^2+6x-7=0\)
\(\Leftrightarrow x^2-x+7x-7=0\)
\(\Leftrightarrow x\left(x-1\right)+7\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+7\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+7=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=1\\x=-7\end{cases}}\)