K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: \(\dfrac{x+5}{x^2-5x}-\dfrac{x+25}{2x^2-50}=\dfrac{5-x}{2x^2+10x}\)

ĐKXĐ: \(x\notin\left\{0;5;-5\right\}\)

Ta có: \(\dfrac{x+5}{x^2-5x}-\dfrac{x+25}{2x^2-50}=\dfrac{5-x}{2x^2+10x}\)

\(\Leftrightarrow\dfrac{x+5}{x\left(x-5\right)}-\dfrac{x+25}{2\left(x^2-25\right)}=\dfrac{5-x}{2x\left(x+5\right)}\)

\(\Leftrightarrow\dfrac{2\left(x+5\right)^2}{2x\left(x-5\right)\left(x+5\right)}-\dfrac{x\left(x+25\right)}{2x\left(x-5\right)\left(x+5\right)}=\dfrac{-\left(x-5\right)^2}{2x\left(x+5\right)\left(x-5\right)}\)

Suy ra: \(2\left(x+5\right)^2-x\left(x+25\right)=-\left(x-5\right)^2\)

\(\Leftrightarrow2\left(x^2+10x+25\right)-x^2-25x=-\left(x^2-10x+25\right)\)

\(\Leftrightarrow2x^2+20x+50-x^2-25x=-x^2+10x-25\)

\(\Leftrightarrow x^2-5x+50+x^2-10x+25=0\)

\(\Leftrightarrow2x^2-15x+75=0\)

\(\Leftrightarrow2\left(x^2-\dfrac{15}{2}x+\dfrac{75}{2}\right)=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{15}{4}+\dfrac{225}{16}+\dfrac{375}{16}=0\)

\(\Leftrightarrow\left(x-\dfrac{15}{4}\right)^2+\dfrac{375}{16}=0\)(vô lý)

Vậy: \(S=\varnothing\)

30 tháng 1 2021

Cảm ơn bạn nhiều nha ❤️

3 tháng 9 2021

a. 5x + 3(x2 - x - 1)

= 5x + 3x2 - 3x - 3

= 3x2 + 5x - 3x - 3

= 3x2 + 2x - 3

b. (5 - x)(5 + x) - (2x - 1)2

25 - x2 - (4x2 - 4x + 1)

= 25 - x2 - 4x2 + 4x - 1

= 25 - 1 - x2 - 4x2 + 4x 

= 24 - 5x2 + 4x

3 tháng 9 2021

a) \(5x+3\left(x^2-x-1\right)=5x+3x^2-3x-3=3x^2+2x-3\)

b) \(\left(5-x\right)\left(5+x\right)-\left(2x-1\right)^2=25-x^2-4x^2+4x-1=-5x^2+4x+24\)

 

9 tháng 10 2021

\(a,\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-\dfrac{1}{2}\end{matrix}\right.\\ b,\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\\ c,\Leftrightarrow2x^2-10x-3x-2x^2=26\\ \Leftrightarrow-13x=26\Leftrightarrow x=-2\\ d,\Leftrightarrow x^2-18x+16=0\\ \Leftrightarrow\left(x^2-18x+81\right)-65=0\\ \Leftrightarrow\left(x-9\right)^2-65=0\\ \Leftrightarrow\left(x-9+\sqrt{65}\right)\left(x-9-\sqrt{65}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=9-\sqrt{65}\\9+\sqrt{65}\end{matrix}\right.\)

\(e,\Leftrightarrow x^2-10x-25=0\\ \Leftrightarrow\left(x-5\right)^2-50=0\\ \Leftrightarrow\left(x-5-5\sqrt{2}\right)\left(x-5+5\sqrt{2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5+5\sqrt{2}\\x=5-5\sqrt{2}\end{matrix}\right.\\ f,\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\\ g,\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\\ \Leftrightarrow\left(2-x\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\\ h,\Leftrightarrow x^2+2x+3x+6=0\\ \Leftrightarrow\left(x+3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\\ i,\Leftrightarrow4x^2-12x+9-4x^2+4=49\\ \Leftrightarrow-12x=36\Leftrightarrow x=-3\)

\(j,\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\\ k,\Leftrightarrow x^2\left(x-1\right)=4\left(x-1\right)^2\\ \Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

12 tháng 7 2019

\(a,\frac{x+1}{x-2}-\frac{x-1}{x+2}=\frac{2\left(x^2+2\right)}{x^2-4}\)

\(\Leftrightarrow\frac{\left(x+1\right)\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{2x^2+4}{\left(x-2\right)\left(x+2\right)}\)

\(\Rightarrow x^2+2x+x+2-\left(x^2-2x-x+2\right)=2x^2+4\)

\(\Leftrightarrow x^2+3x+2-x^2+2x+x-2=2x^2+4\)

\(\Leftrightarrow6x=2x^2+4\)

\(\Leftrightarrow2x^2+4-6x=0\)

\(\Leftrightarrow2x^2+4-6x=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x=-3\end{cases}}\)

12 tháng 7 2019

\(b,\frac{2x+1}{x-1}=\frac{5\left(x-1\right)}{x+1}\)

\(\Leftrightarrow\left(2x+1\right)\left(x+1\right)=5\left(x-1\right)\left(x-1\right)\)

\(\Leftrightarrow2x^2+2x+x+1=5\left(x^2-2x+1\right)\)

\(\Leftrightarrow2x^2+3x+1=5x^2-10x+5\)

\(\Leftrightarrow5x^2-2x^2-10x-3x+5-1=0\)

\(\Leftrightarrow3x^2-13x+4=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-\frac{1}{3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-\frac{1}{3}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=\frac{1}{3}\end{cases}}}\)

19 tháng 11 2021

Mình cần gấp ạk

19 tháng 11 2021

A và B

13 tháng 10 2021

3: \(\left(x+5\right)\left(x^2-5x+25\right)-x\left(x-4\right)^2+16x\)

\(=x^3+125-x^3+8x^2-16x+16x\)

\(=8x^2+125\)

28 tháng 6 2021

`(x+5)/(x^2-5x)-(x-5)/(2x^2+10x)=(x+25)/(2x^2-50)`

ĐK:`x ne 0,x ne 5,x ne -5`

Nhân 2 vế với `2x(x+5)(x-5)` ta có phương trình:

`2(x+5)(x+5)-(x-5)(x-5)=x(x+25)`

`<=>2(x^2+10x+25)-(x^2-10x+25)=x^2+25x`

`<=>x^2+30x+25=x^2+25x`

`<=>5x+25=0`

`<=>5x=-25`

`<=>x=-5(l)`

Vậy pt vô nghiệm

19 tháng 7 2021

\(\dfrac{x+5}{x^2-5x}-\dfrac{x-5}{2x^2+10x}=\dfrac{x+25}{2x^2-50}\)

 \(\dfrac{x+5}{x\left(x-5\right)}-\dfrac{x-5}{2x\left(x+5\right)}=\dfrac{x+5}{2\left(x-5\right)\left(x+5\right)}\)

dkxd : x ≠ 0

          x ≠ 5

          x ≠ -5

MTC : 2x(x - 5)(x + 5)

Quy đồng mẫu thức hai vế của phương trình :

⇒ \(\dfrac{2\left(x-5\right)\left(x+5\right)}{2x\left(x-5\right)\left(x+5\right)}-\dfrac{\left(x-5\right)\left(x+5\right)}{2x\left(x-5\right)\left(x+5\right)}\) = \(\dfrac{x\left(x+25\right)}{2x\left(x-5\right)\left(x+5\right)}\)

Suy ra : 2(x - 5)(x + 5) - (x - 5)(x + 5) = x(x + 25)

         \(\Leftrightarrow\) 2(x2 - 25) - (x2 - 25) = x2 + 25x

         \(\Leftrightarrow\) 2x2 - 50 - x2 + 25 - x2 - 25x = 0

        \(\Leftrightarrow\) -25 - 25x = 0

        \(\Leftrightarrow\) -25x = 25

        \(\Leftrightarrow\) x = \(\dfrac{25}{-25}=-1\) (thỏa mãn)

 Vậy S = \(\left\{-1\right\}\)

 Chúc bạn học tốt

 

Ta có: \(\dfrac{x+5}{x^2-5x}-\dfrac{x-5}{2x^2+10x}=\dfrac{x+25}{2x^2-50}\)

\(\Leftrightarrow\dfrac{2\left(x+5\right)^2}{2x\left(x+5\right)\left(x-5\right)}-\dfrac{\left(x-5\right)^2}{2x\left(x+5\right)\left(x-5\right)}=\dfrac{x\left(x+25\right)}{2x\left(x+5\right)\left(x-5\right)}\)

Suy ra: \(2\left(x^2+10x+25\right)-\left(x^2-10x+25\right)=x^2+25x\)

\(\Leftrightarrow2x^2+20x+50-x^2+10x-25-x^2-25x=0\)

\(\Leftrightarrow15x+25=0\)

\(\Leftrightarrow15x=-25\)

hay \(x=-\dfrac{5}{3}\)(thỏa ĐK)

26 tháng 5 2021

\(x\ne0;x\ne\pm5\)

PT \(\Leftrightarrow\dfrac{x+25}{2\left(x+5\right)\left(x-5\right)}-\dfrac{x+5}{x\left(x-5\right)}+\dfrac{x-5}{2x\left(x+5\right)}=0\)

\(\Rightarrow x^2+25x-2x^2-20x-50+x^2-10x+25=0\)

\(\Leftrightarrow-5x-25=0\)

\(\Leftrightarrow x=-5\) (ktm)
Vậy pt vô nghiệm.

26 tháng 5 2021

ĐKXĐ: \(\left\{{}\begin{matrix}x\ne0\\x\ne\pm5\end{matrix}\right.\).

\(PT\Leftrightarrow\dfrac{x+25}{2\left(x-5\right)\left(x+5\right)}-\dfrac{x+5}{x\left(x-5\right)}=\dfrac{5-x}{2x\left(x+5\right)}\)

\(\Leftrightarrow\dfrac{x\left(x+25\right)}{2x\left(x-5\right)\left(x+5\right)}-\dfrac{2\left(x+5\right)^2}{2x\left(x-5\right)\left(x+5\right)}=\dfrac{\left(5-x\right)\left(x-5\right)}{2x\left(x-5\right)\left(x+5\right)}\)

\(\Rightarrow x\left(x+25\right)-2\left(x+5\right)^2=\left(5-x\right)\left(x-5\right)\)

\(\Leftrightarrow x^2+25x-2\left(x^2+10x+25\right)=10x-x^2-25\)

\(\Leftrightarrow-5x=25\Leftrightarrow x=-5\) (loại)

Vậy PT vô nghiệm