Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5B=-25x2 -20x+5 = 9 - (25x2 +20x +4) = 9- (5x+2)2 \(\le9\)
=> B\(\le\frac{9}{5}\)<=> x=-2/5
Tìm GTLN của: \(B=-5x^2-4x+1\)
Ta có
\(B=-5x^2-4x+1\)
\(B=-5\left(x^2+\frac{4}{5}x-\frac{1}{5}\right)\)
\(B=-5\left[x^2+2x.\frac{2}{5}+\left(\frac{2}{5}\right)^2-\frac{4}{25}-\frac{5}{25}\right]\)
\(B=-5\left[\left(x+\frac{2}{5}\right)^2-\frac{9}{25}\right]\)
\(B=-5\left(x+\frac{2}{5}\right)^2+\frac{9}{5}\)
Mà \(-5\left(x+\frac{2}{5}\right)^2\le0\). Dấu "=" xảy ra khi và chỉ khi \(x=\frac{-2}{5}\)
=> \(-5\left(x+\frac{2}{5}\right)^2+\frac{9}{5}\le\frac{9}{5}\). Dấu "=" xảy ra khi và chỉ khi \(x=\frac{-2}{5}\)
Vậy B có GTLN bằng \(\frac{9}{5}\)khi \(x=\frac{-2}{5}\).
Tìm GTLN của: \(C=-2x^2+10x+3\)
Ta có
\(C=-2x^2+10x+3\)
\(C=-2\left(x^2-5x-\frac{3}{2}\right)\)
\(C=-2\left[x^2-2x.\frac{5}{2}+\left(\frac{5}{2}\right)^2-\frac{25}{4}-\frac{9}{4}\right]\)
\(C=-2\left[\left(x-\frac{5}{2}\right)^2-\frac{17}{2}\right]\)
\(C=-2\left(x-\frac{5}{2}\right)^2+17\)
Mà \(-2\left(x-\frac{5}{2}\right)^2\le0\). Dấu "=" xảy ra khi và chỉ khi \(x=\frac{5}{2}\)
=> \(-2\left(x-\frac{5}{2}\right)^2+17\le17\). Dấu "=" xảy ra khi và chỉ khi \(x=\frac{5}{2}\)
Vậy C có GTLN bằng 17 khi \(x=\frac{5}{2}\)
Cac ban giup minh voi
1) Giai cac phuong trinh
a) 2010.(4x-3)-4x2+3=0
b)( x2-\(\frac{25}{4}\))2= 10x +1
\(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\\ \Leftrightarrow2x\cdot\left(4x+3\right)-15\cdot\left(6x-2\right)=35\cdot\left(5x+4\right)+315\\ \Leftrightarrow80x+63-90x+30=175x+140+315\\ \\\Leftrightarrow-6x+93=175x+455\\ \Leftrightarrow93=175x+455+6x\\ \Leftrightarrow93=181x+45\\ \Leftrightarrow-362=181x\\ \Rightarrow x=-\frac{362}{181}=-2\)
Nhận thấy \(x=0\) ko phải nghiệm, chia 2 vế cho \(x^2\)
\(x^2+\frac{1}{x^2}+2\left(x+\frac{1}{x}\right)+4=0\)
Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)
\(\Rightarrow t^2+2t+2=0\Leftrightarrow\left(t+1\right)^2+1=0\)
Phương trình vô nghiệm
\(4x^2-y^2+4x+1=\left(2x+1\right)^2-y^2=\left(2x+1-y\right)\left(2x+1+y\right)\)
ko có đáp án nhé . mk nói thật luôn . nếu sai bạn đừng k nhé !
=x ∈ ∅ nhé
Answer:
\(\left(x^2+4x+4\right):\left(x+2\right)\)
\(=\frac{\left(x+2\right)^2}{x+2}\)
\(=\frac{\left(x+2\right)\left(x+2\right)}{x+2}\)
\(=x+2\)