K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2019

x2019-2019.x2018+2019.x2018+2019.x2017-2019.x2016+......2019.x-200     Tại x=2018

Giúp mik vs nhé 

14 tháng 2 2019

Sai đề nên t sửa luôn nhé!

Vì \(x=2018\Rightarrow2019=2018+1=x+1\)

\(A=x^{2017}-2019\cdot x^{2018}+2019\cdot x^{2017}-2019\cdot x^{2016}+....+2019\cdot x-200\)

\(\Rightarrow A=x^{2019}-\left(x+1\right)x^{2018}+\left(x+1\right)x^{2017}-\left(x+1\right)x^{2016}+....-\left(x+1\right)x^2+\left(x+1\right)x-200\)

\(\Rightarrow A=x^{2019}-x^{2019}-x^{2018}+x^{2018}+x^{2017}-x^{2017}-x^{2016}+....-x^3-x^2+x^2+x-200\)

\(\Rightarrow A=x-200=2018-200=1818\)

Lập bảng

  2018 2019 

|x-2018|

2018-x02018-x|x-2018

|x-2019|

2019-x|x-20190x-2019
|x-2018|+|x-2019|=14037-2x 4037 2x-4037
      
      

4037-2x=1 với \(x\le2018\)

2x=4036

x=2018(t/m)

4037=1(loại)

2x-4037=1 với x\(\ge2019\)

2x=4038

x=2019(t/m)

26 tháng 4 2020

giá trị biểu thức là 174

26 tháng 4 2020

Ta có x = 2018

=> x + 1 = 2019

\(x^5-2019.x^4+2019.x^3-2019.x^2+2019.x-2020\)

\(=x^5-\left(x+1\right).x^4+\left(x+1\right).x^3-\left(x+1\right).x^2+\left(x+1\right).x-2020\)

\(=x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-2020\)

\(=x-2020\)

Thay x = 2018 vào biểu thức , ta được

\(2018-2020=-2\)

Vậy giá trị biểu thức là -2

19 tháng 8 2019

viết cái đề bài đéo hiểu đó có phải là đề bài ko

3 tháng 9 2019

mình sẽ trả lời câu hỏi này như sau : 

Xét: x=2019; x=2018

x>2019=>x-2018 >1=>/x-2019/2019+/x-2018/2018>1(L)

x<2018<=>2019-x>1=>/2019-x/2019+/x-2018/>1(L)

2018<x<2019<=>0<2019-x<1=>/2019-x/2019<2019-x

                            0<x-2018<1<=>/x-2018/2018<1(L)

 Vậy NPT: x=2019  x= 2018

2 tháng 1 2020

\(x=\frac{2019^{2020}+1}{2019^{2019}+1}>\frac{2019^{2020}+1+2018}{2019^{2019}+1+2018}=\frac{2019^{2020}+2019}{2019^{2019}+2019}=\frac{2019\left(2019^{2019}+1\right)}{2019\left(2019^{2018}+1\right)}=\frac{2019^{2019}+1}{2019^{2018}+1}\)(1)

\(y=\frac{2019^{2019}+2020}{2019^{2018}+2020}< \frac{2019^{2019}+2020-2019}{2019^{2018}+2020-2019}=\frac{2019^{2019}+1}{2019^{2018}+1}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow x>y\)

5 tháng 1 2020

\(x=2019\)\(\Rightarrow x+1=2020\)

\(\Rightarrow B=x^{2019}-\left(x+1\right).x^{2018}+........-\left(x+1\right).x^2+\left(x+1\right).x+1\)

        \(=x^{2019}-x^{2019}+x^{2018}+.......-x^3-x^2+x^2+x+1\)

        \(=x+1=2020\)

Vậy tại \(x=2019\)thì \(B=2020\)

5 tháng 1 2020

Ta có x=2019

   => x + 1=2020

thay x+1 vào B, ta có:

\(A=x^{2019}-\left(x+1\right)x^{2018}+\left(x+1\right)x^{2017}-...+\left(x+1\right)x-1\)

=> \(A=x^{2019}-x^{2019}-x^{2018}+x^{2018}+x^{2017}-...+x^2+x-1\)

=> \(A=x-1=2020-1=2019\)

a) Ta có:\(8\left(x-2019\right)^2⋮8\Rightarrow25-y^2⋮8\)\(\left(1\right)\)

Mặt khác: \(8\left(x-2019\right)^2\ge0\Rightarrow25-y^2\ge0\)\(\left(2\right)\)

Từ\(\left(1\right),\left(2\right)\)ta có: \(y^2=1;9;25\)

Xét:\(y^2=1\Rightarrow8\left(x-2019\right)^2=24\Rightarrow\left(x-2019\right)^2=3\left(ktm\right)\)

\(y^2=9\Rightarrow8\left(x-2019\right)^2=16\Rightarrow\left(x-2019\right)^2=2\left(ktm\right)\)

\(y^2=25\Rightarrow8\left(x-2019\right)^2=0\Rightarrow\left(x-2019\right)^2=0\Rightarrow x-2019=0\Rightarrow x=2019\left(tm\right)\)

Vậy \(y=5;x=2019\)

\(y=-5;x=2019\)