K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

x^2-xy+y^2

=x^2-2*x*1/2y+1/4y^2+3/4y^2

=(x-1/2y)^2+3/4y^2>0 với mọi x,y thỏa mãn \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

8 tháng 3 2017

các bạn lên google xem xxx nhé

28 tháng 3 2022

\(A=\dfrac{2}{3}xy^2.\dfrac{3}{2}x\)

\(=x^2y^2\)

Bậc 4

28 tháng 3 2022

Tại x=-1; y=2

\(\Rightarrow A=x^2y^2=\left(-1\right)^2.2^2=4\)

Ta có: x,y≠0

\(\Rightarrow\left\{{}\begin{matrix}x^2>0\forall x\ne0\\y^2>0\forall y\ne0\end{matrix}\right.\)

\(\Rightarrow x^2y^2>0\forall x,y\ne0\)

a: A=2/3*3/2*xy^2*x=x^2y^2

b: Bậc là 4

c: Khi x=-1 và y=2 thì A=(-1)^2*2^2=4

d: A=(xy)^2>0 khi x<>0 và y<>0

7 tháng 4 2019

Ta có:

\(M=x^2+2+2y\left(x+y-1\right)=x^2+2+2xy+2y^2-2y=x^2+2xy+y^2+y^2-2y+2\)

\(M=\left(x+y\right)^2+\left(y-1\right)^2+1>0\forall x,y\)