Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt $x-y=a$ và $xy=b$ thì hpt trở thành:
\(\left\{{}\begin{matrix}\left(x-y\right)+xy=13\\\left(x-y\right)^2+2xy=25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=13\\a^2+2b=25\end{matrix}\right.\)
$a+b=13\Leftrightarrow b=13-a$. Thay vô pt $(2)$:
$a^2+2(13-a)=25$
$\Leftrightarrow a^2-2a+1=0\Leftrightarrow (a-1)^2=0$
$\Leftrightarrow a=1$
$\Rightarrow b=12$
Vậy $x-y=1\Rightarrow x=y+1$. Thay vô $xy=12$ thì:
$(y+1)y=12$
$\Leftrightarrow y^2+y-12=0$
$\Leftrightarrow (y-3)(y+4)=0$
$\Rightarrow y=3$ hoặc $y=-4$
Vậy $(x,y)=(4,3); (-3,-4)$
Thấy $4+3> -3+(-4)$ nên $T=(-3)+(-4)=-7$
dcv_new
dcv - new
Thay m = - 1 vào thì ta có: \(x^2-x-6=0\)
<=> x = 3 hoặc x = -2
Vậy m = -1 và x2 = - 2
a, Thay \(x_1=3\)vào phương trình , khi đó :
\(pt< =>\)\(3^2+3m+2m-4=0\)
\(< =>5m+5=0\)
\(< =>m=-\frac{5}{5}=-1\)
Thay \(m=-1\)vào phương trình , khi đó :
\(pt< =>x^2-x+2=0\)
\(< =>x=\varnothing\left(vo-nghiem\right)\)(giải delta)
Vậy phương trình chỉ có nghiệm kép khi \(m=-1\)
b, Theo hệ thức vi ét ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-m\\x_1x_2=\frac{c}{a}=2m-4\end{cases}}\)
Khi đó \(A=\frac{2m-4+3}{-m}=\frac{2m-1}{-m}\)
Bạn thiếu đề rồi thì phải !
a) Ta xét :
\(\Delta'=\left(m-2\right)^2+2m=m^2-2m+4=\left(m-1\right)^2+3\ge3>0\)
Vì \(\Delta'>0\)nên phương trình trên luôn có hai nghiệm phân biệt.
b) Dễ thấy : x1<x2 nên ta có :
\(x_1=\frac{2\left(m-2\right)-\sqrt{\left(m-1\right)^2+3}}{2}=m-2-\sqrt{\left(m-1\right)^2+3}\) ; \(x_2=\frac{2\left(m-2\right)+\sqrt{\left(m-1\right)^2+3}}{2}=m-2+\sqrt{\left(m-1\right)^2+3}\)
\(x_2-x_1=x_1^2\Leftrightarrow2\sqrt{\left(m-1\right)^2+3}=\left(m-2-\sqrt{\left(m-1\right)^2+3}\right)^2\)
\(\Leftrightarrow\left(m-2\right)^2+\left(m-1\right)^2+3-2\left(m-2\right)\sqrt{\left(m-1\right)^2+3}=2\sqrt{\left(m-1\right)^2+3}\)
\(\Leftrightarrow m=2\)
Vậy m = 2
\(\Leftrightarrow x+y+z-2\sqrt{x}-2\sqrt{y-1}-2\sqrt{z-2}=0\)
\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-1-2\sqrt{y-1}+1\right)+\left(z-2-2\sqrt{z-2}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)
\(VT\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}=1;\sqrt{y-1}=1;\sqrt{z-2}=1\)
\(\Leftrightarrow x=1;y=2;z=3\)
\(\Rightarrow x^2_0+y^2_0+z^2_0=1^2+2^2+3^2=14\)
1) \(\Delta=m^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\ge0\)với mọi m=> pt luôn có nghiệm với mọi m
a) áp dụng hệ thức vi ét ta có: \(x1+x2=-m\); \(x1.x2=m-1\)
\(B=x1^2+x2^2-4\left(x1+x2\right)=\left(x1+x2\right)^2-2x1x2-4\left(x1+x2\right)=m^2-2\left(m-1\right)-4\left(-m\right)=m^2+2m-2\)
\(=\left(m^2+2m+1\right)-3=\left(m+1\right)^2-3\ge-3\Rightarrow MinB=-3\Leftrightarrow m=-1\)
2) \(2x^2+2x+3x+3=0\Leftrightarrow\left(x+1\right)\left(2x+3\right)=0\Rightarrow\)x1=-1 và x2=-3/2
tổng 2 nghiệm \(x1^2+1+x2^2+1=1^2+1+\left(-\frac{3}{2}\right)^2+1=\frac{21}{4}\)
tích 2 nghiệm \(=\left(1^2+1\right)\left(\frac{3}{2}^2+1\right)=\frac{13}{2}\)=> PT cần tìm: \(x^2-\frac{21}{4}x+\frac{13}{2}=0\)
Do x0 là nghiệm của phương tình x2-m(m+4)x+m2+2m-1=0 nên tồn tại m để x02 -(m+4)x0+m2+2m-1=0
<=> m2+(2-x0)m+x02-4x0 -1=0 có nghiệm
<=> (2-x0)2 -4(x02-4x0-1) >=0
<=> -3x02+12x0+8 >=0
<=> \(\frac{6-2\sqrt{15}}{3}\le x_0\le\frac{6+2\sqrt{15}}{3}\)
Tự xử lý phần dấu "="