Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( x^2 + 5x + 6 )
x^2 + 6x - 1x + 6
phần dưới bạn tự làm nha! những bài kia cũng tương tự vậy thôi. muon biet them lat sgk có dạng bài đó đấy
\(2.A=x^2-x-12=x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}-12-\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2-\dfrac{49}{4}\text{≥}\dfrac{49}{4}\) ⇒ \(A_{Min}=-\dfrac{49}{4}\) ⇔ \(x=\dfrac{1}{2}\)
\(1.B=x^2+x-12=x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}-12-\dfrac{1}{4}=\left(x+\dfrac{1}{2}\right)^2-\dfrac{49}{4}\text{≥}-\dfrac{49}{4}\)⇒ \(A_{Min}=-\dfrac{49}{4}\) ⇔ \(x=-\dfrac{1}{2}\)
\(3.C=x^2-9x+20=x^2-2.\dfrac{9}{2}+\dfrac{81}{4}+20-\dfrac{81}{4}=\left(x-\dfrac{9}{2}\right)^2-\dfrac{1}{4}>=-\dfrac{1}{4}\)
⇒ \(C_{Min}=-\dfrac{1}{4}\) ⇔ \(x=\dfrac{9}{2}\)
4. Tương tự .
P/S : Đề bài của bạn chẵng rõ là tim Min hay Max , hay là phân tích thành nhân tử . Mình làm min nhé .
\(B=\frac{x^2+10x+20}{x^2+6x+9}=\frac{(x^2+6x+9)+4(x+3)-1}{x^2+6x+9}\)
\(=1+\frac{4(x+3)}{x^2+6x+9}-\frac{1}{x^2+6x+9}=1+\frac{4(x+3)}{(x+3)^2}-\frac{1}{(x+3)^2}\)
\(=1+\frac{4}{(x+3)}-\frac{1}{(x+3)^2}\)
Đặt \(\frac{1}{x+3}=a\Rightarrow B=1+4a-a^2=5-(a^2-4a+4)\)
\(=5-(a-2)^2\leq 5\)
Vậy \(B_{\max}=5\Leftrightarrow a=2\Leftrightarrow x=-\frac{5}{2}\)
\(C=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}\)
Có: \(3x^2+9x+7=3(x^2+3x+\frac{9}{4})+\frac{1}{4}=3(x+\frac{3}{2})^2+\frac{1}{4}\geq \frac{1}{4}\)
\(\Rightarrow \frac{10}{3x^2+9x+7}\leq \frac{10}{\frac{1}{4}}=40\)
\(\Rightarrow C\leq 41\)
Vậy \(C_{\max}=41\Leftrightarrow x=\frac{-3}{2}\)
(x^2 + 2x)^2 - 9x^2 - 18x + 20 = (x^2 + 2x)^2 - 9(x^2 + 2x) + 20
Đặt x^2 + 2x = a ta có:
a^2 - 9a + 20 = (a - 4)(a - 5)
Thay ngược lại ta có: (x^2 + 2x - 4)(x^2 + 2x - 5)
e) (x2+2x)2+9x2+18x+20=(x2+2x+4)(x2+2x+5)(x2+2x)2+9x2+18x+20=(x2+2x+4)(x2+2x+5)
<=>\(\left(x-1\right)\left(x-2\right)\left(x-4\right)\left(x-5\right)-40=0\)<=> (x2-6x+5) (x2-6x+8) -40=0 <=> (x2-6x+5)2+3(x2-6x+5)-40=0
<=> (x2-6x+5)2+2.3/2(x2-6x+5)+9/4-9/4-40=0
<=> (x2-6x+5+3/2)2 -169/4=0
đến bước này là thành hàng đẳng thức thứ 3 rồi. rất đơn giản, vì 169/4 là 13^2 phần 2^2
bạn chỉ cần đặt mỗi vế tích bằng không rồi tìm x là ra luôn nhé :))
(x2+2x)2+9x2+18x+20
=(x2+2x)2+9(x2+2x)+20
Đặt t=x2+2x ta được:
t2+9t+20=t2+4t+5t+20
=t.(t+4)+5.(t+4)
=(t+4)(t+5)
thay t=x2+2x ta được:
(x2+2x+4)(x2+2x+5)
Vậy (x2+2x)2+9x2+18x+20=(x2+2x+4)(x2+2x+5)
\(9x^2+y^2+2z^2-18x+4z-6y+20=0\)
\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+\left(2z^2+4z+2\right)=0\)
\(\Leftrightarrow9\left(x^2-2x+1\right)+\left(y-3\right)^2+2\left(z^2+2z+1\right)=0\)
\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)
\(\Leftrightarrow\begin{cases}9\left(x-1\right)^2=0\\\left(y-3\right)^2=0\\2\left(z+1\right)^2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x-1=0\\y-3=0\\z+1=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x=1\\y=3\\z=-1\end{cases}\)
(x2 + 5x + 6)(x2 + 9x + 20) = 24
<=> (x + 2)(x + 3)(x + 4)(x + 5) - 24 = 0
<=> (x2 + 7x + 10)(x2 + 7x + 12) - 24 = 0 (1)
Đặt x2 + 7x + 11 = t, ta có:
(1) <=> (t - 1)(t + 1) - 24 = 0
<=> t2 - 1 - 24 = 0
<=> (t - 5)(t + 5) = 0
\(\Leftrightarrow\left[{}\begin{matrix}t-5=0\\t+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+7x+11-5=0\\x^2+7x+11+5=0\end{matrix}\right.\)
<=> (x + 1)(x + 6) = 0 (vì \(x^2+7x+16\ge\dfrac{15}{4}>0\))
<=> x = - 1 hoặc x = - 6
~ ~ ~ ~ ~
x4 - 24x = 32
<=> x4 - 24x - 32 = 0
<=> (x2 - 2x - 4)(x2 + 2x + 8) = 0
<=> \(\left(x-1-\sqrt{5}\right)\left(x-1+\sqrt{5}\right)=0\) (vì \(x^2+2x+8\ge7>0\))
\(\Leftrightarrow\left[{}\begin{matrix}x=1+\sqrt{5}\\x=1-\sqrt{5}\end{matrix}\right.\)
\(x^2-9x+20=\left(x^2-4x\right)-\left(5x-20\right)=x\left(x-4\right)-5\left(x-4\right)=\left(x-4\right)\left(x-5\right)\)