Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
â) thay m = 6 và phương trình ta đc
\(x^2-5x+6=0\)
\(\Leftrightarrow\left(x-2\right).\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.=>\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
b.
Phương trình có 2 nghiệm khi: \(\Delta=25-4m\ge0\Rightarrow m\le\dfrac{25}{4}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=m\end{matrix}\right.\)
Pt có 2 nghiệm dương khi \(m>0\)
\(x_1\sqrt{x_2}+x_2\sqrt{x_1}=6\)
\(\Leftrightarrow x_1^2x_2+x_2^2x_1+2x_1x_2\sqrt{x_1x_2}=36\)
\(\Leftrightarrow x_1x_2\left(x_1+x_2\right)+2x_1x_2\sqrt{x_1x_2}=36\)
\(\Leftrightarrow5m+2m\sqrt{m}=36\)
Đặt \(\sqrt{m}=t>0\Rightarrow2t^3+5t^2-36=0\)
\(\Leftrightarrow\left(t-2\right)\left(2t^2+9t+18\right)=0\)
\(\Leftrightarrow t=2\Rightarrow\sqrt{m}=2\)
\(\Rightarrow m=4\)
https://hoc24.vn/cau-hoi/giai-phuong-trinh-2xx240.1392400917138
Theo đề bài thì ta có:
\(\hept{\begin{cases}3x_1^2+5x_1+4-m=0\\x_2^2-5x_2+4+m=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}9x_1^2+15x_1+12-3m=0\left(1\right)\\x_2^2-5x_2+4+m=0\left(2\right)\end{cases}}\)
Lấy (1) - (2) ta được
\(\left(9x_1^2-x_2^2\right)+\left(15x_1+5x_2\right)+8-4m=0\)
\(\Leftrightarrow\left(3x_1+x_2\right)\left(3x_1-x_2+5\right)+8-4m=0\)
\(\Leftrightarrow\left(3x_1+x_2\right)\left(3x_1+x_2-2x_2+5\right)+8-4m=0\)
\(\Leftrightarrow\left(6-2x_2\right)+8-4m=0\)
\(\Leftrightarrow x_2=7-2m\)
Thế lại vô (2) ta được
\(\left(7-2m\right)^2-5\left(7-2m\right)+4+m=0\)
\(\Leftrightarrow4m^2-17m+18=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=2\\m=\frac{9}{4}\end{cases}}\)
\(\Leftrightarrow-x^2+5x+\sqrt{x}+\sqrt{5-x}-7=0\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\x=4\end{cases}}\)
đặt \(t=x^2-5x+7\) pt thành \(t\ge0\)
\(t^2+t-2=0\) (t)
<=>\(\left(t-1\right)\left(t+2\right)=0\)
<=>\(\left[{}\begin{matrix}t=1\\t=-2\end{matrix}\right.\)
so với điều kiện =>t=1 thỏa
=>\(x^2+-5x+7=1\)
<=> \(x^2-5x+6=0\)
<=>\(\left(x-2\right)\left(x-3\right)=0\)
<=>\(\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
KL vậy pt có 2 nghiệm là \(\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)