Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^3+3x^2+3x+1=\left(x+1\right)^3\)
b) \(x^3-6x^2+12x-8=\left(x-2\right)^3\)
c) \(x^2-2xy+y^2-16=\left(x-y\right)^2-4^2=\left(x-y+4\right)\left(x-y-4\right)\)
d) \(49-x^2+2xy-y^2=7^2-\left(x-y\right)^2=\left(7+x-y\right)\left(7-x+y\right)\)
Viết lại : \(M=x\left(x\left(x+y-2\right)-y+1\right)+\left(3-y\right)y-1\)
Thay x + y - 2 = 0 vào M được : \(M=-xy+x-y^2+3y-1=-y\left(y+x-2\right)+y+x+2-3=-3\)
Vậy M = -3
Xin lỗi mình viết nhầm, sửa lại :
\(M=x\left(x\left(x+y-2\right)-y+1\right)+\left(3-y\right)y-1\)(1)
Thay x + y - 2 = 0 vào (1) được : \(M=-xy+x-y^2+3y-1=-y\left(x+y-1\right)+\left(x+y-2\right)+1=1\)
Vậy M = 1
a) \(\text{}/3x-5/-\frac{1}{7}=\frac{1}{3}\) b)\(\left(\frac{3}{5}x-\frac{2}{3}x-x\right).\frac{1}{7}=\frac{-5}{21}\)
\(/3x-5/=\frac{10}{21}\) \([x.\left(\frac{3}{5}-\frac{2}{3}-1\right)]=\frac{-5}{21}.7\)
\(\Rightarrow3x-5=\frac{10}{21}hay3x-5=\frac{-10}{21}\) \(\left[x.\frac{-16}{15}\right]=\frac{-5}{3}\)
\(3x=\frac{115}{21}\) \(3x=\frac{95}{21}\) \(x=\frac{25}{16}\)
\(x=\frac{115}{63}\) \(x=\frac{95}{63}\) Vậy x = \(\frac{25}{16}\)
Vậy x \(\in\left\{\frac{115}{63};\frac{95}{63}\right\}\)
a) 3x2-7x=0
<=> x(3x-7)=0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\3x-7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{7}{3}\end{cases}}}\)
b) làm tương tự
c) \(\left(x^2-1\right)^2=9\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-1=3\\x^2-1=-3\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^2=-2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-2\\x=2\end{cases}}}\)
\(2x^3-50=0\)
\(\Rightarrow2\left(x^3-25\right)=0\)
\(\Rightarrow x^3-25=0\Rightarrow x^3=25\)
\(\Rightarrow x=\sqrt[3]{25}\)
\(x^2-5x=-6\)
\(\Rightarrow x\left(x-5\right)=-6\)
Xét ước
\(\left(2x-1\right)^2-\left(3x+5\right)=0\)
\(\Rightarrow4x^2-4x+1-3x-5=0\)
\(\Rightarrow4x^2-4-7x=0\)
\(\Rightarrow4x^2-7x=4\)
\(\Rightarrow x\left(4x-7\right)=4\)
Xét ước
\(4x^2-20x+25=0\)
\(\Rightarrow\left(2x-5\right)^2=0\)
\(\Rightarrow2x=5\Rightarrow x=\dfrac{5}{2}\)
\(\left(3x-1\right)^2-\left(x-2\right)^2=0\)
\(\Rightarrow\left(3x-1\right)^2=\left(x-2\right)^2\)
\(\Rightarrow\left|3x-1\right|=\left|x-2\right|\)
Xét dấu:v
a.(2x +1). (2x+1)=1
Mà chỉ có 1.1=1
Vậy 2x + 1=1
2x=1-1
2x=0
Suy ra: x= 0
Hoàng Khánh Thi thiếu nha.
a) (2x+1)2 = \(\left(\pm1\right)^2\)
=> 2x + 1 = 1 hoặc 2x + 1 = -1
=> 2x = 0 hoặc 2x = -2
=> x = 0 hoặc x = -1.
\(x^2-3x+\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow x\left(x-3\right)+\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=3\end{cases}}\)