K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2018

a) thay \(m=2\) vào ta có \(\left(1\right)\Leftrightarrow x^2+3x+2=0\)

ta có : \(a-b+c=0\) \(\Rightarrow\) phương trình có 2 nghiệm phân biệt

\(x_1=-1;x_2=\dfrac{-c}{a}=-2\)

b) ta có : \(\Delta=\left(2m-1\right)^2-8\left(m-1\right)=4m^2-4m+1-8m+8\)

\(=4m^2-12m+9=\left(2m-3\right)^2\ge0\forall m\)

\(\Rightarrow\) phương trình luôn có nghiệm với mọi \(m\) (đpcm)

c) theo hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=1-2m\\x_1x_2=2m-2\end{matrix}\right.\)

ta có : \(x_1\left(x_2-5\right)+x_2\left(x_1-5\right)=33\)

\(\Leftrightarrow x_1x_2-5x_1+x_1x_2-5x_2=33\Leftrightarrow2x_1x_2-5\left(x_1+x_2\right)=33\)

\(\Leftrightarrow2\left(2m-2\right)-5\left(1-2m\right)=33\Leftrightarrow14m-9=33\)

\(\Leftrightarrow m=3\) vậy \(m=3\)

7 tháng 12 2017

Hỏi đáp Toán

7 tháng 12 2017

câu b tương tự

câu c chia 2 thợp :th1 m=0

TH2 m≠0 rồi cứ triển thôi

10 tháng 12 2018

help me! đang cần gấp ạ ! mong mọi người giúp đỡ !!!

a: TH1: m=1

Pt sẽ là -(2*1-1)x+1+1=0

=>-x+2=0

=>x=2(loại)

TH2: m<>1

\(\text{Δ}=\left(2m-1\right)^2-4\left(m-1\right)\left(m+1\right)\)

\(=4m^2-4m+1-4m^2+4=-4m+5\)

Để phương trình có hai nghiệm phân biệt thì -4m+5>0

=>m<5/4

Theo đề, ta có hệ:

\(\left\{{}\begin{matrix}x_1-3x_2=0\\x_1+x_2=\dfrac{2m-1}{m-1}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4x_2=\dfrac{-2m+1}{m-1}\\x_1=3x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{2m-1}{4\left(m-1\right)}\\x_1=\dfrac{6m-3}{4m-4}\end{matrix}\right.\)

x1x2=m+1/m-1

=>\(\dfrac{\left(2m-1\right)\left(6m-3\right)}{16\left(m-1\right)^2}=\dfrac{m+1}{m-1}\)

=>\(\dfrac{\left(2m-1\right)\left(6m-3\right)}{16\left(m-1\right)^2}=\dfrac{16\left(m-1\right)\left(m+1\right)}{16\left(m-1\right)^2}\)

=>\(16m^2-16=12m^2-12m+3\)

=>4m^2+12m-19=0

hay \(x=\dfrac{-3\pm2\sqrt{7}}{2}\)

c: \(\text{Δ}=\left(2m-2\right)^2-12\left(3m-5\right)\)

\(=4m^2-8m+4-36m+60=4m^2-44m+64\)

Để phương trình có hai nghiệm phân biệt thì m^2-11m+16>0

=>\(\left\{{}\begin{matrix}x< \dfrac{11-\sqrt{57}}{2}\\x>\dfrac{11+\sqrt{57}}{2}\end{matrix}\right.\)

Theo đề, ta có hệ:

x1-x2=0 và x1+x2=2m-2/3

=>2x1=(2m-2)/3 và x1=x2

=>x1=x2=m-1/3

x1*x2=3m-5/3

=>\(\dfrac{m^2-2m+1}{9}=\dfrac{3m-5}{3}\)

=>m^2-2m+1=9m-15

=>m^2-11m+16=0

hay \(m\in\varnothing\)

7 tháng 5 2020

1/ \(x^2-2\left(m-1\right)x+m^2-3m=0\)

\(\Delta'>0\Leftrightarrow m^2-2m+1-m^2+3m>0\Leftrightarrow m>-1\)

\(\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}=2m-2\\x_1x_2=m^2-3m\end{matrix}\right.\)

\(x^2_1+x^2_2\le8\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\le8\Leftrightarrow\left(2m-2\right)^2-2\left(m^2-3m\right)\le8\)

\(\Leftrightarrow4m^2-8m+4-2m^2+6m\le8\)

\(\Leftrightarrow2m^2-2m-4\le0\Leftrightarrow-1\le m\le2\)

\(\Rightarrow-1< m\le2\)

7 tháng 5 2020

Câu 1b, 2, 3 làm tương tự

Câu 4:

\(bpt>0,\forall m\Leftrightarrow\left\{{}\begin{matrix}m+1>0\\\Delta'< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\4m^2-\left(m+1\right)\left(-3m-5\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow7m^2+8m+5< 0\left(lđ,\forall m\right)\)

\(\Rightarrow m>-1\)

16 tháng 2 2021

a, Ta có : \(mx^3-x^2+2x-8m=0\)

\(\Leftrightarrow m\left(x^3-8\right)-\left(x^2-2x\right)=0\)

\(\Leftrightarrow m\left(x-2\right)\left(x^2+2x+4\right)-x\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(mx^2+2mx+4m-x\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(mx^2+x\left(2m-1\right)+4m\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\mx^2+x\left(2m-1\right)+4m=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(TM\right)\\mx^2+x\left(2m-1\right)+4m=0\left(I\right)\end{matrix}\right.\)

- Để phương trình ban đầu có 3 nghiệm phân biệt lớn hơn 1

<=> Phương trình ( I ) có 2 nghiệm phân biệt lớn hơn 1 .

- Xét phương trình ( I ) có : \(\Delta=b^2-4ac=\left(2m-1\right)^2-4m.4m\)

\(=4m^2-4m+1-16m^2=-12m^2-4m+1\)

- Để phương trình ( I ) có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\)

\(\Leftrightarrow-\dfrac{1}{2}< m< \dfrac{1}{6}\) ( * )

- Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1-2m}{m}\\x_1x_2=4\end{matrix}\right.\)

- Để phương trình ( I ) có nghiệm lớn hơn 1 \(\Leftrightarrow\left\{{}\begin{matrix}x_1-1+x_2-1>0\\\left(x_1-1\right)\left(x_2-1\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1-4m}{m}>0\\5-\dfrac{1-2m}{m}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1-4m}{m}>0\\\dfrac{7m-1}{m}>0\end{matrix}\right.\)

- Lập bảng xét dấu ( đoạn này làm tắt tí nha :vv )

Từ bảng xét dấu ta được : \(\left\{{}\begin{matrix}\left[{}\begin{matrix}m< 0\\m>\dfrac{1}{7}\end{matrix}\right.\\0< m< \dfrac{1}{4}\end{matrix}\right.\)

- Kết hợp điều kiện ( * ) ta được :\(\dfrac{1}{7}< m< \dfrac{1}{6}\)

Vậy ...

 

 

 

 

16 tháng 2 2021

b, - Xét phương trình trên có : \(\Delta^,=b^{,2}-ac=\left(m-2\right)^2-\left(m-1\right)\left(m-3\right)\)

\(=m^2-4m+4-m^2+m+3m-3=1>0\)

Nên phương trình có 2 nghiệm phân biệt .

Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-2\right)}{m-1}\\x_1x_2=\dfrac{m-3}{m-1}\end{matrix}\right.\)

- Để \(x_1+x_2+x_1x_2< 1\)

\(\Leftrightarrow\dfrac{2\left(m-2\right)+\left(m-3\right)-\left(m-1\right)}{m-1}< 0\)

\(\Leftrightarrow\dfrac{2m-6}{m-1}< 0\)

- Đặt \(\dfrac{2m-6}{m-1}=f\left(m\right)\)

Cho f(m) = 0 => m = 3

m-1 = 0 => m = 1

- Lập bảng xét dầu :

m.............................1..........................................3...................................

2m-6............-..........|......................-.....................0...................+.................

m-1..............-............0...................+.....................|....................+.................

f(m).............+...........||..................-........................0................+....................

- Từ bảng xét dầu ta được : Để \(f\left(m\right)< 0\)

\(\Leftrightarrow1< m< 3\)

Vậy ...

 

a: Δ=(2m-1)^2-4(m-1)

=4m^2-4m+1-4m+4

=4m^2-8m+5

=4m^2-8m+4+1=(2m-2)^2+1>=1>0 với mọi m

=>PT luôn có 2 nghiệm với mọi m

b: x1^3+x2^3=2m^2-m

=>(x1+x2)^3-3x1x2(x1+x2)=2m^2-m

=>(2m-1)^3-3(m-1)(2m-1)=2m^2-m

=>8m^3-12m^2+6m-1-3(2m^2-3m+1)-2m^2+m=0

=>8m^3-14m^2+7m-1-6m^2+9m-3=0

=>8m^3-20m^2+16m-4=0

=>m=1/2 hoặc m=1

NV
26 tháng 7 2021

\(x^4-1-2\left(m+1\right)x^2+2\left(m+1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2+1\right)-2\left(m+1\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-2m-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=1\\x^2=2m+1\end{matrix}\right.\)

Pt có 4 nghiệm pb khi: \(\left\{{}\begin{matrix}2m+1>0\\2m+1\ne1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>-\dfrac{1}{2}\\m\ne0\end{matrix}\right.\)

Do \(x=\pm1< 3\) nên để  \(x_1< x_2< x_3< x_4< 3\) thì:

\(\sqrt{2m+1}< 3\Leftrightarrow m< 4\) \(\Rightarrow\left\{{}\begin{matrix}-\dfrac{1}{2}< m< 4\\m\ne0\end{matrix}\right.\)

b. \(\left\{{}\begin{matrix}x_1-x_3=x_3-x_2\\x_1-x_3=x_2-x_1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-x_2\\x_1-x_3=-x_1-x_1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_2=-x_1\\x_3=3x_1\end{matrix}\right.\)

Do vai trò \(x_1;x_2\) như nhau, giả sử \(x_1< 0\) \(\Rightarrow x_1;x_3\) là 2 nghiệm âm

TH1: \(\left\{{}\begin{matrix}x_1=-1\\x_2=1\end{matrix}\right.\)  \(\Rightarrow\left\{{}\begin{matrix}x_3=-\sqrt{2m+1}\\x_3=3x_1\end{matrix}\right.\) \(\Rightarrow-\sqrt{2m+1}=-3\Rightarrow m=4\)

TH2: \(x_1=-\sqrt{2m+1}\Rightarrow\left\{{}\begin{matrix}x_3=-1\\x_3=3x_1\end{matrix}\right.\) \(\Rightarrow-1=-3\sqrt{2m+1}\) \(\Rightarrow m=-\dfrac{4}{9}\)

26 tháng 7 2021

thầy cho em hỏi nếu bài này đặt \(x^2=t^{ }\left(t\ge0\right)\)

thì giải pt ẩn t có 2 nghiệm phân biệt dương

\(=>\left\{{}\begin{matrix}\Delta>0\\S>0\\P>0\end{matrix}\right.\) em giải ra thì m>0 =)))

 

NV
11 tháng 9 2021

\(\Delta'=\left(m+1\right)^2-\left(m^2+2m\right)=1>0\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=m+1-1=m\\x_2=m+1+1=m+2\end{matrix}\right.\)

\(\left|x_1\right|=3\left|x_2\right|\Leftrightarrow\left|m\right|=3\left|m+2\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}3m+6=-m\\3m+6=m\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=-\dfrac{3}{2}\\m=-3\end{matrix}\right.\)