Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=\left(m+1\right)^2-8\ge0\Rightarrow\left[{}\begin{matrix}m\ge-1+2\sqrt{2}\\m\le-1-2\sqrt{2}\end{matrix}\right.\)
Phương trình ko có nghiệm \(x=0\) nên biểu thức đề bài luôn xác định
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+1\\x_1x_2=2\end{matrix}\right.\)
\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2=14\)
\(\Leftrightarrow\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^2=16\)
\(\Leftrightarrow\left(\frac{x_1^2+x_2^2}{x_1x_2}\right)^2=16\Leftrightarrow\left(\frac{x_1^2+x_2^2}{2}\right)^2=16\)
\(\Leftrightarrow\frac{x_1^2+x_2^2}{2}=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=8\)
\(\Leftrightarrow\left(m-1\right)^2=12\Leftrightarrow\left[{}\begin{matrix}m=1+2\sqrt{3}\\m=1-2\sqrt{3}\left(l\right)\end{matrix}\right.\)
Chỗ pt ko có nghiệm x = 0 là sao vậy ạ, mong bn giải thích giùm mình vs ạ
b) phương trình có 2 nghiệm \(\Leftrightarrow\Delta'\ge0\)
\(\Leftrightarrow\left(m-1\right)^2-\left(m-1\right)\left(m+3\right)\ge0\)
\(\Leftrightarrow m^2-2m+1-m^2-3m+m+3\ge0\)
\(\Leftrightarrow-4m+4\ge0\)
\(\Leftrightarrow m\le1\)
Ta có: \(x_1^2+x_1x_2+x_2^2=1\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)
Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)\\x_1x_2=\dfrac{c}{a}=m+3\end{matrix}\right.\)
\(\Leftrightarrow\left[-2\left(m-1\right)^2\right]-2\left(m+3\right)=1\)
\(\Leftrightarrow4m^2-8m+4-2m-6-1=0\)
\(\Leftrightarrow4m^2-10m-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m_1=\dfrac{5+\sqrt{37}}{4}\left(ktm\right)\\m_2=\dfrac{5-\sqrt{37}}{4}\left(tm\right)\end{matrix}\right.\Rightarrow m=\dfrac{5-\sqrt{37}}{4}\)
Đúng rồi đó, Minh Sơn