Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=\(\frac{1}{2.x}+\left(\frac{1}{1.2}\frac{1}{2.3}\frac{1}{3.4}...\frac{1}{99.100}\right)\)
=\(\frac{1}{2.x}+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)\(=2\)
=\(\frac{1}{2.x}+\left(1-\frac{1}{100}\right)\)\(=2\)
=\(\frac{1}{2.x}+\frac{99}{100}\)\(=2\)
=\(\frac{1}{2.x}=2-\frac{99}{100}\)
=\(\frac{1}{2.x}=\frac{101}{200}\)
=\(2.x=200\)
=\(x=200:2=100\)
1/2 * x + 1/2 + 1/6 + 1/12 + .... + 1/9900 = 2
<=> 1/2 * x + ( 1/2 + 1/6 + 1/12 + ... + 1/9900 ) = 2
<=> 1/2 * x + ( 1 /1.2 + 1/2.3 + 1/3.4 + ... + 1/99.100 ) = 2
<=> 1/2 * x + ( 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + .... + 1/99 - 1/100 ) = 2
<=> 1/2 * x + ( 1 - 1/100 ) = 2
<=> 1/2 * x + ( 100/100 - 1/100 ) = 2
<=> 1/2 * x + 99/100 = 2
<=> 1/2 * x = 2 - 99/100
<=> 1/2 * x = 101/100
<=> x = 101/100 : 1/2
<=> x = 101/100 * 2
<=> x = 101/50
Vậy x = 101/50
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}+x=100\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}+x=100\)
\(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}+x\right)=100\)
\(\left(1-\frac{1}{100}\right)+x=100\)
\(\frac{99}{100}+x=100\)
\(x=100-\frac{99}{100}=\frac{9901}{100}\)
\(\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}+x=100\)
\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{2}{3}+....+\frac{1}{99}-\frac{1}{100}+x=100\)
\(\Rightarrow1-\frac{1}{100}+x=100\)
\(\Rightarrow\frac{99}{100}+x=100\)
\(\Rightarrow x=100-\frac{99}{100}\)
\(\Rightarrow x=\frac{1}{100}\)
~Chúc bạn hok tốt~
\(x-\frac{1}{2}-\frac{1}{6}-...-\frac{1}{9900}=200\)
\(\Leftrightarrow x-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{9900}\right)=200\)
\(\Leftrightarrow x-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)=200\)
\(\Leftrightarrow x-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)=200\)
\(\Leftrightarrow x-\left(1-\frac{1}{100}\right)=200\)
Ez rồi :) Tự giải tiếp
Ta có: \(x-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-...-\frac{1}{9900}=200\)
=> \(x-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\right)=200\)
=> \(x-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)=200\)
=> \(x-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)=200\)
=> \(x-\left(1-\frac{1}{100}\right)=200\)
=> \(x-\frac{99}{100}=200\)
=> \(x=200+\frac{99}{100}\)
=> \(x=\frac{20099}{100}\)
Đưa về: x. (1/1-1/2+1/2-1/3+...-1/99+1/99-1/100) = 99
=> 99x/100 = 99
=> x = 100
\(x+\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+\left(x+\frac{1}{12}\right)+...+\left(x+\frac{1}{9900}\right)=2\)
=> \(x+\left(x+\frac{1}{1.2}\right)+\left(x+\frac{1}{2.3}\right)+\left(x+\frac{1}{3.4}\right)+...+\left(x+\frac{1}{99.100}\right)=2\)
=> \(\left(x+x+x+...+x\right)+\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)=2\)(100 hạng tử x)
=> \(100x+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=2\)
=> \(100x+1-\frac{1}{100}=2\)
=> \(100x+\frac{99}{100}=2\)
=> \(100x=\frac{101}{100}\)
=> \(x=\frac{101}{10000}\)