Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thay x=-1 ta có : \(\left(-x^2\right)+\left(-x^4\right)+\left(-x^6\right)+\left(-x^8\right)+....+\left(-x^{100}\right)\) =\(\left(-1^2\right)+\left(-1^4\right)+\left(-1^6\right)+\left(-1^8\right)+...+\left(-1^{100}\right)\) =1+1+1+1+...+1 = 50
Tìm x hả bạn ?
a ) \(\left(3x+\frac{1}{4}\right)^3=-27\)
\(\left(3x+\frac{1}{4}\right)^3=\left(-3\right)^3\)
\(\Rightarrow3x+\frac{1}{4}=-3\)
\(\Rightarrow3x=-3-\frac{1}{4}=-\frac{13}{4}\)
\(\Rightarrow x=-\frac{13}{4}:3=-\frac{13}{12}\)
Vậy x = \(-\frac{13}{12}\)
cho em hoi câu này xin các anh chị:
10mux x+4y = 2013
Vũ Hồng Linh bạn check lại bài đầu dùm =_="
\(\left[-\frac{1}{3}\right]^3\cdot x=\frac{1}{81}\)
\(\Leftrightarrow x=\frac{1}{81}:\left[-\frac{1}{3}\right]^3\)
\(\Leftrightarrow x=\frac{1}{81}:\left[-\frac{1}{27}\right]\)
\(\Leftrightarrow x=\frac{1}{81}\cdot(-27)=-\frac{1}{3}\)
\(\left[x-\frac{1}{2}\right]^3=\frac{1}{27}\)
\(\Leftrightarrow\left[x-\frac{1}{2}\right]^3=\left[\frac{1}{3}\right]^3\)
=> Làm nốt
Mấy bài kia cũng làm tương tự
(- \(\dfrac{1}{3}\))3.\(x\) = \(\dfrac{1}{81}\)
\(x=\dfrac{1}{81}\) : (- \(\dfrac{1}{3}\))3
\(x\) = - (\(\dfrac{1}{3}\))4 :(\(\dfrac{1}{3}\))3
\(x=-\dfrac{1}{3}\)
Vậy \(x=-\dfrac{1}{3}\)
3^x*5^x-1=224
3^x*5^x/5=224
15^x=224*5
15^x=1120
=>ko tồn tại x thỏa mãn đề bài vị 15^x luôn có tận cùng bằng 5 (x khác 0 ) hoặc 1 ( x=0) ma 1120 co tận cùng bằng 0
a, (-0,2)2 \(\times\) 5 - \(\dfrac{2^{13}\times27^3}{4^6\times9^5}\)
= 0,04 \(\times\) 5 - \(\dfrac{2^{13}\times3^9}{2^{12}\times3^{10}}\)
= 0,2 - \(\dfrac{2}{3}\)
= \(\dfrac{2}{10}\) - \(\dfrac{2}{3}\)
= - \(\dfrac{7}{15}\)
b, \(\dfrac{5^6+2^2.25^3+2^3.125^2}{26.5^6}\)
= \(\dfrac{5^6+4.5^6+8.5^6}{26.5^6}\)
= \(\dfrac{5^6.\left(1+4+8\right)}{26.5^6}\)
= \(\dfrac{1}{2}\)
\(f\left(x\right)=-3x^2+x-1+x^4-x^3-x^2+3x^4+2x^3\)
\(f\left(x\right)=\left(x^4+3x^4\right)-\left(x^3-2x^3\right)-\left(3x^2+x^2\right)+x-1\)
\(f\left(x\right)=4x^4+x^3-4x^2+x-1\)
\(g\left(x\right)=x^4+x^2-x^3+x-5+5x^3-x^2-3x^4\)
\(g\left(x\right)=\left(x^4-3x^4\right)+\left(5x^3-x^3\right)+\left(x^2-x^2\right)+x-5\)
\(g\left(x\right)=-2x^4+4x^3+x-5\)
`@` `\text {Ans}`
`\downarrow`
`a,`
\(f(x) -3x^2 + x - 1 + x^4 - x^3 - x^2 + 3x^4 + 2x^3\)
`= (x^4 +3x^4) + (-x^3 +2x^3) + (-3x^2 - x^2) + x - 1`
`= 4x^4 + x^3 -4x^2 + x -1`
\(g(x) = x^4 + x^2 - x^3 + x - 5 + 5x^3 - x^2 - 3x^4\)
`= (x^4-3x^4) + (-x^3+5x^3) + (x^2 - x^2) + x -5`
`= -2x^4 + 4x^3 +x - 5`
\(a,\)\(\frac{x^7}{81}=27\)
\(\Rightarrow x^7=3^3.3^4=3^7\)
\(\Rightarrow x=3\)
\(b,\left(x^2\right)^4=\frac{x^{18}}{x^{10}}\)
\(\Rightarrow x^{18}=x^{10}.x^6\)
\(\Rightarrow x^{18}-x^{16}=0\)
\(\Rightarrow x^{16}\left(x^2-1\right)=0\)
\(\Rightarrow x^{16}\left(x-1\right)\left(x+1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x=\pm1\end{cases}}\)
\(\frac{x^7}{81}=27\Rightarrow x^7=27\cdot81=2187\)
\(x^7=2187\Leftrightarrow x^7=3^7\Rightarrow x=3\)
Vậy x=3