Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\\ a,\Rightarrow x=\dfrac{5\cdot4}{3}=\dfrac{20}{3}\\ b,\Rightarrow x=8\\ c,\Rightarrow x=\dfrac{27\cdot2}{3,6}=15\\ 2,\\ a,\dfrac{6}{9}=\dfrac{42}{63};\dfrac{6}{42}=\dfrac{9}{63};\dfrac{63}{9}=\dfrac{42}{6};\dfrac{63}{42}=\dfrac{9}{6}\\ b,\dfrac{4}{18}=\dfrac{2}{9};\dfrac{4}{2}=\dfrac{18}{9};\dfrac{9}{18}=\dfrac{2}{4};\dfrac{9}{2}=\dfrac{18}{4}\)
B1. phân a tui ko bt nha :>
\(B=\frac{2^{13}\cdot9^4}{6^6\cdot8^3}\)
\(=\frac{2^{13}\cdot\left(3^2\right)^4}{\left(2\cdot3\right)^6\cdot\left(2^3\right)^3}\)
\(=\frac{2^{13}\cdot3^8}{2^6\cdot3^6\cdot2^9}\)
\(=\frac{2^{13}\cdot3^8}{2^{15}\cdot3^6}\)
\(=\frac{1\cdot3^2}{2^2\cdot1}\)
\(=\frac{1\cdot9}{4\cdot1}\)
\(=\frac{9}{4}\)
a)Ta có : /a+b/ \(\le\)/a/+/b/ ( dấu bằng xảy ra <=> 0 \(\le\)ab) (1)
A= /x+2/+/x-3/
=/x+2/+/3-x/
Theo (1 ) ta được : /x+2+3-x/ \(\le\)/x+2/ +/3-x/
=> 5 \(\le\)/x+2/+/3-x/ hay 5 \(\le\)/x+2/+/x-3/ = A
Vậy GTNN của A là 5 x=-2 hoặc x=3
b)GTNN của B là 9
a) Ta có: /x - 3/ = /3 - x/
=>A = /x + 2/ + /x - 3/ = /x + 2/ + /3 - x/ lớn hơn hoặc bằng /x + 2 + 3 - x/
Mà /x + 2 + 3 - x/ = /5/ = 5
=>A lớn hơn hoặc bằng 5
Đẳng thức xảy ra khi: (x + 2)(3 - x)=0
=>x = -2 hoặc x = 3
Vậy giá trị nhỏ nhất của A là 5 khi x = -2 hoặc x = 5
a)
\(\frac{x-1}{4}=\frac{2x+1}{5}\)
=> 5 ( x - 1 ) = 4 ( 2x + 1 )
=> 5x - 5 = 8x + 4
=> 5x - 8x = 4 + 5
=> -3x = 9
=> x = -3
b)
\(\frac{x+2}{x-1}=\frac{x-3}{x+1}\)
=> ( x + 2 ) ( x + 1 ) = ( x - 3 ) ( x - 1 )
=> x^2 + x + 2x + 2 = x^2 - x - 3x + 3
=> x^2 + 3x + 2 = x^2 - 4x + 3
=> x^2 + 3x - x^2 + 4x = 3 - 2
=> 7x = 1
=> x = 1/7
\(\left(x-9\right)^3.\left(x^2-4\right)-x^2=-4\)
Đầu bài thế này hả bạn??
đúng rồi đó