Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
11)11) 3x(x-5)2-(x+2)3+2(x-1)3-(2x+1)(4x2-2x+1)=3x(x2-10x+25)-(x3+6x2+12x+8)+2(x3-3x2+3x-1)-(8x3+1)=3x3-30x2+75x-x3-6x2-12x-8+2x3-6x2+6x-2-8x3-1=-4x3-42x2+63x-11
\(\left(x^2-2x+3\right)\left(\frac{1}{2x}-5\right)\)
\(=\frac{x^2}{2x}-5x^2-\frac{2x}{2x}+10x+\frac{3}{2x}-15\)
\(=\frac{x^2}{2x}-5x^2-16+10x+\frac{3}{2x}\)
\(=-5x^2+\frac{x^2}{2x}+\frac{20x^2}{2x}+\frac{3}{2x}-16\)
\(=-5x^2+\frac{x^2+20x+3}{2x}-16\)
học tốt
(x^2-2x+3)(1/2x-5)=1/2x^3-5x^2-x^2+10x+3/2x-15=1/2x^3-6x^2+11,5x-15
Những câu dạng như 19 hoặc 20 thì em nên sử dụng phương pháp trắc nghiệm chứ ko nên giải tự luận (vì như thế quá tồn thời gian, 1 bài kiểm tra trắc nghiệm ko đủ thời gian cho phép làm điều đó)
Câu 19 thử A, C đều sai, B cũng sai do ko phù hợp ĐKXĐ, do đó D đúng
Câu 20 tương tự, thử với \(x=-1\) thỏa mãn, \(x=3;x=4\) đều ko thỏa mãn, vậy A đúng
21A
22B
23A
24A
25C
26A
27C
28A
`3)(x+4)/(x-3)-(x-3)/(x+4)=(x^2+18x+7)/(x^2+x-12)`
`đk:x ne 3,x ne -4`
Nhân 2 vế với `(x-3)(x+4) ne 0` ta có:
`(x+4)^2-(x-3)^2=x^2+18x+7`
`<=>x^2+8x+16-x^2+6x-9=x^2+18x+7`
`<=>14x+7=x^2+18x+7`
`<=>x^2+4x=0`
`<=>x(x+4)=0`
Vì `x ne -4=>x+4 ne 0`
`<=>x=0`
Vậy `S={0}`
\(a,=x^2+x+4x+4=\left(x+1\right)\left(x+4\right)\\ b,=x^2+2x-3x-6=\left(x-3\right)\left(x+2\right)\\ c,=x^2-2x-3x+6=\left(x-2\right)\left(x-3\right)\\ d,=3\left(x^2-2x+5x-10\right)=3\left(x-2\right)\left(x+5\right)\\ e,=-3x^2+6x-x+2=\left(x-2\right)\left(1-3x\right)\\ f,=x^2-x-6x+6=\left(x-1\right)\left(x-6\right)\\ h,=4\left(x^2-3x-6x+18\right)=4\left(x-3\right)\left(x-6\right)\\ i,=3\left(3x^2-3x-8x+5\right)=3\left(x-1\right)\left(3x-8\right)\\ k,=-\left(2x^2+x+4x+2\right)=-\left(2x+1\right)\left(x+2\right)\\ l,=x^2-2xy-5xy+10y^2=\left(x-2y\right)\left(x-5y\right)\\ m,=x^2-xy-2xy+2y^2=\left(x-y\right)\left(x-2y\right)\\ n,=x^2+xy-3xy-3y^2=\left(x+y\right)\left(x-3y\right)\)
Bài 11:
Gọi độ dài quãng đường AB là x
Thời gian đi là x/30(h)
Thời gian về là x/40(h)
Theo đề, ta có phương trình: x/30-x/40=3/4
hay x=90
\(\left(x-4\right)^2=\left(2x+1\right)^2\)
\(\Leftrightarrow\left(x-4\right)^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left(x-4-2x-1\right)\left(x-4+2x+1\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(3x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\3x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\3\left(x-1\right)=0\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=5\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=1\end{cases}}}\)
(x-4)2 = (2x+1)2
=> x-4 = 2x +1
x - 2x = 1 +4
-x = 5
x=-5