Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì bài dài nên mình sẽ tách ra nhé.
1a. Ta có:
$x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)=-2(xy+yz+xz)$
$x^3+y^3+z^3=(x+y+z)^3-3(x+y)(y+z)(x+z)=-3(x+y)(y+z)(x+z)$
$=-3(-z)(-x)(-y)=3xyz$
$\Rightarrow \text{VT}=-30xyz(xy+yz+xz)(1)$
------------------------
$x^5+y^5=(x^2+y^2)(x^3+y^3)-x^2y^2(x+y)$
$=[(x+y)^2-2xy][(x+y)^3-3xy(x+y)]-x^2y^2(x+y)$
$=(z^2-2xy)(-z^3+3xyz)+x^2y^2z$
$=-z^5+3xyz^3+2xyz^3-6x^2y^2z+x^2y^2z$
$=-z^5+5xyz^3-5x^2y^2z$
$\Rightarrow 6(x^5+y^5+z^5)=6(5xyz^3-5x^2y^2z)$
$=30xyz(z^2-xy)=30xyz[z(-x-y)-xy]=-30xyz(xy+yz+xz)(2)$
Từ $(1);(2)$ ta có đpcm.
1b.
$x^4+y^4=(x^2+y^2)^2-2x^2y^2=[(x+y)^2-2xy]^2-2x^2y^2$
$=(z^2-2xy)^2-2x^2y^2=z^4+2x^2y^2-4xyz^2$
$x^3+y^3=(x+y)^3-3xy(x+y)=-z^3+3xyz$
Do đó:
$x^7+y^7=(x^4+y^4)(x^3+y^3)-x^3y^3(x+y)$
$=(z^4+2x^2y^2-4xyz^2)(-z^3+3xyz)+x^3y^3z$
$=7x^3y^3z-14x^2y^2z^3+7xyz^5-z^7$
$\Rightarrow \text{VT}=7x^3y^3z-14x^2y^2z^3+7xyz^5$
$=7xyz(x^2y^2-2xyz^2+z^4)$
$=7xyz(xy-z^2)$
$=7xyz[xy+z(x+y)]^2=7xyz(xy+yz+xz)^2$
$=7xyz[x^2y^2+y^2z^2+z^2x^2+2xyz(x+y+z)]$
$=7xyz(x^2y^2+y^2z^2+z^2x^2)$ (đpcm)
\(\frac{x-2}{7}+\frac{x-7}{2}=\frac{7}{x-2}-\frac{2}{x-7}\)ĐKXĐ: \(x\ne2\)và \(x\ne7\)
\(\Leftrightarrow\frac{2\left(x-2\right)}{14}+\frac{7\left(x-7\right)}{14}=\frac{\left(x-7\right)7}{\left(x-7\right)\left(x-2\right)}-\frac{\left(x-2\right)2}{\left(x-7\right)\left(x-2\right)}\)
\(\Leftrightarrow2\left(x-2\right)+7\left(x-7\right)=\left(x-7\right)7-\left(x-2\right)2\)
\(\Leftrightarrow2x-4+7x-49=7x-49-2x-4\)
\(\Leftrightarrow\left(2x-4+7x-49\right)-\left(7x-49-2x-4\right)=0\)
\(\Leftrightarrow2x-4+7x-49+7x+49+2x+4=0\)
\(\Leftrightarrow4x-49x-8-98=0\)
\(\Leftrightarrow x\left(4-49\right)-106=0\)
\(\Leftrightarrow x\left(-45\right)=106\)
\(\Leftrightarrow x=\frac{-106}{45}\)
\(\left(x+7\right)\left(3x-15\right)=0\\ \Rightarrow3\left(x-5\right)\left(x+7\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=5\\x=-7\end{matrix}\right.\\ 4x\left(x+7\right)=2\left(x+7\right)\\ \Rightarrow4x\left(x+7\right)-2\left(x+7\right)=0\\ \Rightarrow2\left(2x-1\right)\left(x+7\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-7\end{matrix}\right.\\ \left(x-3\right)^2-x\left(x-4\right)=5\\ \Rightarrow x^2-6x+9-x^2+4x-5=0\\ \Rightarrow-2x+4=0\\ \Rightarrow-2x=-4\Rightarrow x=2\)
hưng phúc đầy đủ chưa bạn nhỉ?
1) \(\left(x+7\right)\left(3x-15\right)=0\)
⇔\(\left[{}\begin{matrix}x+7=0\\3x-15=0\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x=-7\\x=5\end{matrix}\right.\)
2) \(4x\left(x+7\right)=2\left(x+7\right)\)
\(2\left(2x+1\right)\left(x+7\right)=0\)
⇔\(\left[{}\begin{matrix}2x+1=0\\x+7=0\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-7\end{matrix}\right.\)
k: =>6x^2+21x-2x-7-6x^2+5x-6x+5=16
=>19x-x-2=16
=>18x=18
=>x=1
l: =>4x(x-7)-(x-7)=0
=>(x-7)(4x-1)=0
=>x=7 hoặc x=1/4
m: =>2x+30-x^2-5x=0
=>-x^2-3x+30=0
=>x^2+3x-30=0
=>\(x=\dfrac{-3\pm\sqrt{129}}{2}\)
n: =>(x-2-2)(x-2+2)=0
=>x(x-4)=0
=>x=0 hoặc x=4
a/ (x-1)2-(4x+3)(2-x)=x2-2x+1-(8x-4x2+6-3x)
=x2-2x+1-8x+4x2-6+3x=5x2-7x-6
b/ (15x3y2 - 6x2y3) : 3x2y2 = 5x - 2y
c/ \(\dfrac{x+7}{x-7}-\dfrac{x-7}{x+7}+\dfrac{4x^2}{x^2-49}\)=\(\dfrac{\left(x+7\right)^2-\left(x-7\right)^2+4x^2}{\left(x-7\right)\left(x+7\right)}\)=\(\dfrac{x^2+14x+49-\left(x^2-14x+49\right)+4x^2}{\left(x-7\right)\left(x+7\right)}\)=\(\dfrac{28x+4x^2}{\left(x-7\right)\left(x+7\right)}\)=\(\dfrac{4x\left(x+7\right)}{\left(x-7\right)\left(x+7\right)}\)=\(\dfrac{4x}{x-7}\)
\(\left(x+4\right)\left(x^2-4x+16\right)-x\left(x-4\right)^2=8\left(x-3\right)\left(x+3\right)\)3)
\(\Leftrightarrow x^3+4^3-x\left(x-4\right)^2=8\left(x^2-3^2\right)\)
\(\Leftrightarrow x^3+64-x\left(x^2-8x+16\right)=8x^2-72\)
\(\Leftrightarrow x^3+64-x^3+8x^2-16x-8x^2-72=0\)
\(\Leftrightarrow-16x-8=0\)
\(\Leftrightarrow-8\left(2x-1\right)=0 \)
\(\Rightarrow2x-1=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy \(x=\frac{1}{2}\)
a) \(\left(x-4\right)^2-\left(x-4\right)=0\)
\(\left(x-4\right)\left(x-4-1\right)=0\)
\(\left[{}\begin{matrix}x-4=0\\x-5=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)
b) \(5x^2\left(x-7\right)+7\left(x-7\right)=0\)
\(\left(x-7\right)\left(5x^2+7\right)=0\)
\(\left[{}\begin{matrix}x-7=0\\5x^2+7=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=7\\x^2=\dfrac{-7}{5}\end{matrix}\right.\)
\(x=7\)
c) \(x^2\left(x-3\right)-\left(x-3\right)=0\)
\(\left(x-3\right)\left(x^2-1\right)=0\)
\(\left[{}\begin{matrix}x=3\\x=\pm1\end{matrix}\right.\)
a) (x - 4)^2=(x - 4)
(x - 4) (x -4)=(x -4 )
(x - 4) (x - 4)-(x - 4)=0
(x-4) (x-4-1)=0
(x-4) (x-5)=0
TH1:x-4=0 TH2:x-5=0
x=4 x=5
Ko chép lại đề!
\(\Leftrightarrow x^2-7^2+x^2-2=2x^2+10\)
\(\Leftrightarrow x^2-49+x^2-2=2x^2+10\)
\(\Leftrightarrow2x^2-51=2x^2+10\)
<=> -51 = 10 ( vô lý )
=> \(x\in\varnothing\)
\(\frac{x-2}{7}+\frac{x-7}{2}=\frac{7}{x-2}-\frac{2}{x-7}\)
đề bài là giải pt, bạn nào bt giải hộ mình với .Cảm ơn nhiều ạ