Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x,biết:
a/ x + 5x2 =0
⇔x ( 1 + 5x ) = 0
\(\Leftrightarrow\) x = 0 hoặc 1 + 5x = 0
1) x = 0
2) 1+ 5x = 0 \(\Leftrightarrow\) x = \(\frac{-1}{5}\)
Vậy: S = \(\left\{0;\frac{-1}{5}\right\}\)
b/x+1=(x+1)2
\(\Leftrightarrow\) (x+1) - (x+1)2 = 0
\(\Leftrightarrow\) ( x+ 1)(1-x-1) = 0
\(\Leftrightarrow\) (x+1).(-x) = 0
\(\Leftrightarrow\) x+1 = 0 hoặc x = 0
\(\Leftrightarrow\) x= -1 ; 0
Vậy: S=\(\left\{-1;0\right\}\)
c/ x3+x=0
\(\Leftrightarrow\) x(x2 + 1) = 0
\(\Leftrightarrow\) x = 0 hoặc x2 + 1 = 0
Ta có : x2 + 1 \(\ge\) 0 vs mọi x
Vậy: S = \(\left\{0\right\}\)
d/5x(x−2)−(2−x)=0
\(\Leftrightarrow\) 5x(x-2) + (x - 2) = 0
\(\Leftrightarrow\) (x - 2)(5x+1) = 0
\(\Leftrightarrow\) x - 2 = 0 hoặc 5x+ 1 = 0
\(\Leftrightarrow\) x = 2 hoặc x = \(\frac{-1}{5}\)
Vậy: S = \(\left\{\frac{-1}{5};2\right\}\)
g/ x(x−4)+(x−4)2=0
⇔ (x - 4)( x+x-4) = 0
\(\Leftrightarrow\) x - 4 = 0 hoặc 2x-4=0
\(\Leftrightarrow\) x = 4 hoặc x = 2
Vậy: S= \(\left\{2;4\right\}\)
h/ x2−3x=0
⇔x (x-3) = 0
\(\Leftrightarrow\) x = 0 hoặc x = 3
Vậy: S = \(\left\{0;3\right\}\)
Vậy: S= \(\left\{0;3\right\}\)
i/4x(x+1)=8(x+1)
⇔4x(x+1)-8(x+1) = 0
\(\Leftrightarrow\) 4(x+1) (x - 2) = 0
\(\Leftrightarrow\) x+1 = 0 hoặc x - 2 = 0
\(\Leftrightarrow\) x= -1 hoặc x = 2
Vậy: S=\(\left\{-1;2\right\}\)
Cho 2 số a,b thỏa mãn \(a^3+b^3+3\left(a^2+b^2\right)+4\left(a+b\right)+4=0\)
Tính giá trị của biểu thức \(M=2018\left(a+b\right)^2\)
2. \(a+b+c=0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)^3=0\)
\(\Leftrightarrow a^3+b^3+c^3+3a^2b+3ab^2+3a^{2c}+3ac^2+3b^2c+3bc^2+6abc\)
\(\Leftrightarrow a^3+b^3+c^3+\left(3a^2b+3ab^2+3abc\right)+\left(3a^2c+3ac^2+3abc\right)+\left(3b^2c+3bc^2+3abc\right)-3abc\)
\(\Leftrightarrow a^3+b^3+c^3+3ab\left(a+b+c\right)+3ac\left(a+c+b\right)+3bc\left(b+c+a\right)-3abc\)
Ta có: \(a+b+c=0\)
\(a^3+b^3+c^3+3ab.0+3ac.0+3bc.0=3abc\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\)
Bài 2
\(a+b+c=0\Rightarrow a=-b-c\)
\(VT=a^3+b^3+c^3=\left(-b-c\right)^3+b^3+c^3\)
\(=\left(-b\right)^3-3\left(-b\right)^2c+3\left(-b\right)c^2-c^3+b^3+c^3\)
\(=\left(-b\right)^3-3b^2c-3bc^2-c^3+b^3+c^3\)
\(=-3b^2c-3bc^2=3bc\left(-b-c\right)=3abc=VP\)
Bài 1 :
a ) \(2x\left(x+1\right)+2\left(x+1\right)=\left(x+1\right)\left(2x+2\right)=2\left(x+1\right)^2\)
b ) \(y^2\left(x^2+y\right)-zx^2-zy=y^2\left(x^2+y\right)-z\left(x^2+y\right)=\left(x^2+y\right)\left(y^2-z\right)\)
c ) \(4x\left(x-2y\right)+8y\left(2y-x\right)=4x\left(x-2y\right)-8y\left(x-2y\right)=4\left(x-2y\right)^2\)
d ) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)=\left(x+1\right)\left(3x^2+3x-5x^2+7\right)=\left(x+1\right)\left(3x-2x^2+7\right)\)
e ) \(x^2-6xy+9y^2=\left(x-3x\right)^2\)
Bài 1 :
f ) \(x^3+6x^2y+12xy^2+8y^3=\left(x+2y\right)^3\)
g ) \(x^3-64=\left(x-4\right)\left(x^2+4x+16\right)\)
h ) \(125x^3+y^6=\left(5x+y^2\right)\left(25x^2-5xy^2+y^4\right)\)
Hoặc bác muốn làm kiểu như này nhưng ko cần đặt cũng đc :V t đặt nhìn cho đỡ rối
phải trừ 3ab(a+b) chứ nhỉ ???