Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ thấy:
\(VT\ge\left(x+y\right)^2+1-\dfrac{\left(x+y\right)^2}{4}=\dfrac{3\left(x+y\right)^2}{4}+1\)
Áp dụng Cô-si:
\(\dfrac{3\left(x+y\right)^2}{4}+1\ge2\sqrt{\dfrac{3\left(x+y\right)^2}{4}.1}=\sqrt{3}\left|x+y\right|\ge\sqrt{3}\left(x+y\right)\)
Do đó:
\(\left(x+y\right)^2+1-xy\ge\sqrt{3}\left(x+y\right),\forall x,y\in R\)
\(ĐK:x\ne y;x\ne-y;x^2+xy+y^2\ne0;x^2-xy+y^2\ne0\)
\(A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\left[1:\dfrac{\left(x^3+y^3\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2+y^2\right)}\right]\\ A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+xy+y^2\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)\left(x^2+y^2\right)}\\ A=x-y=B\)
\(x=0;y=0\Leftrightarrow B=0\)
Giá trị của A không xác định vì \(x=y\) trái với ĐK:\(x\ne y\)
Vậy \(A\ne B\)
\(\left|\frac{x+y}{2}-\sqrt{xy}\right|+\left|\frac{x+y}{2}+\sqrt{xy}\right|=\left|\frac{x+2\sqrt{xy}+y}{2}\right|+\left|\frac{x-2\sqrt{xy}+y}{2}\right|\)
=\(\left|\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{2}\right|+\left|\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{2}\right|\) (*)
Có \(\left(\sqrt{x}+\sqrt{y}\right)^2\ge0\Rightarrow\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{2}\ge0\)
\(\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\Rightarrow\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{2}\ge0\)
\(\Rightarrow\) (*) \(\Leftrightarrow\) \(\frac{x+2\sqrt{xy}+y+x-2\sqrt{xy}+y}{2}=\frac{2\left(x+y\right)}{2}=x+y=\left|x\right|+\left|y\right|\) ( vì x ; y >0)
Với x,y < 0 , đẳng thức trên sai ngay từ bước biến đổi (*) , vì x,y <0 thì \(\sqrt{x}\) và \(\sqrt{y}\) không xác định
Với \(x;y< 0\) đẳng thức vẫn đúng, do \(x;y< 0\Rightarrow xy>0\) ta biến đổi như sau:
\(\left|\frac{-\left|x\right|-\left|y\right|-2\sqrt{\left|x\right|\left|y\right|}}{2}\right|+\left|\frac{-\left|x\right|-\left|y\right|+2\sqrt{\left|x\right|\left|y\right|}}{2}\right|\)
\(=\left|\frac{-\left(\left|x\right|+2\sqrt{\left|x\right|\left|y\right|}+\left|y\right|\right)}{2}\right|+\left|\frac{-\left(\left|x\right|-2\sqrt{\left|x\right|\left|y\right|}+\left|y\right|\right)}{2}\right|\)
\(=\left|\frac{-\left(\sqrt{\left|x\right|}+\sqrt{\left|y\right|}\right)^2}{2}\right|+\left|\frac{-\left(\sqrt{\left|x\right|}-\sqrt{\left|y\right|}\right)^2}{2}\right|\)
\(=\frac{\left(\sqrt{\left|x\right|}+\sqrt{\left|y\right|}\right)^2}{2}+\frac{\left(\sqrt{\left|x\right|}-\sqrt{\left|y\right|}\right)^2}{2}\)
\(=\left|x\right|+\left|y\right|\)
Theo AM-GM , có :
\(x+y\ge2\sqrt{xy}\)
\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\)
Nhân vế theo vế :
\( \left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
ĐK: \(x,y>0;x\ne y\)
\(VT=\frac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)
\(=\frac{\sqrt{x^2y}-\sqrt{xy^2}}{\sqrt{x}-\sqrt{y}}\)
\(=\frac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}=\sqrt{xy}=VP\)
\(\Rightarrow\)đpcm
Ta có: \(\frac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}=\frac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}=\sqrt{xy}\)
TK nha!
ta có:\(\frac{\left(x\sqrt{y}+y\sqrt{x}\right)\cdot\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}=\frac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}=x-y\)
vậy.....
\(\frac{\left(x\sqrt{y}+y\sqrt{x}\right).\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\)
\(=\frac{\sqrt{xy}.\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\)
\(=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)\)
\(=x-y\)( đpcm )
\(P=\frac{1}{x^3+y^3}+\frac{1}{xy}\)
Ta có:
\(x+y=1\Rightarrow\left(x+y\right)^3=1\)
\(\Rightarrow x^3+y^3+3xy\left(x+y\right)=1\)
\(\Rightarrow x^3+y^3+3xy=1\)
\(\Rightarrow P=\frac{x^3+y^3+3xy}{x^3+y^3}+\frac{x^3+y^3+3xy}{xy}\)\(=4+\frac{3xy}{x^3+y^3}+\frac{x^3+y^3}{xy}\left(1\right)\)
Áp dụng Bđt Cô si ta có:
\(\frac{3xy}{x^3+y^3}+\frac{x^3+y^3}{xy}\ge2\sqrt{\frac{3xy}{x^3+y^3}\cdot\frac{x^3+y^3}{xy}}=2\sqrt{3}\)
\(\Rightarrow P\ge4+2\sqrt{3}\)(Đpcm)
Dấu = khi \(\hept{\begin{cases}x+y=1\\x^3+y^3=\sqrt{3xy}\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=1\\1-3xy=\sqrt{3xy}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=1\\3\sqrt{xy}=\frac{-1+\sqrt{5}}{2}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x+y=1\\xy=\frac{6-2\sqrt{5}}{12}\end{cases}}\)
\(\Leftrightarrow x^2-x+\frac{6-2\sqrt{5}}{12}=0\)\(\Leftrightarrow x,y=\frac{1\pm\sqrt{\frac{2\sqrt{5}-3}{3}}}{2}\)