Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta sẽ chứng minh:
\(\sqrt{a^2+x^2}+\sqrt{b^2+y^2}\ge\sqrt{\left(a+b\right)^2+\left(x+y\right)^2}\)
Thật vậy, bình phương 2 vế, BĐT tương đương:
\(a^2+x^2+b^2+y^2+2\sqrt{a^2b^2+x^2y^2+a^2y^2+b^2x^2}\ge a^2+b^2+x^2+y^2+2ab+2xy\)
\(\Leftrightarrow\sqrt{a^2b^2+x^2y^2+a^2y^2+b^2x^2}\ge ab+xy\)
\(\Leftrightarrow a^2b^2+x^2y^2+a^2y^2+b^2x^2\ge a^2b^2+x^2y^2+2abxy\)
\(\Leftrightarrow a^2y^2+b^2x^2-2abxy\ge0\)
\(\Leftrightarrow\left(ay-bx\right)^2\ge0\) (luôn đúng)
Áp dụng:
\(VT=\sqrt{a^2+x^2}+\sqrt{b^2+y^2}+\sqrt{c^2+z^2}\)
\(VT\ge\sqrt{\left(a+b\right)^2+\left(x+y\right)^2}+\sqrt{c^2+z^2}\ge\sqrt{\left(a+b+c\right)^2+\left(x+y+z\right)^2}\) (đpcm)
ta có:\(\frac{\left(x\sqrt{y}+y\sqrt{x}\right)\cdot\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}=\frac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}=x-y\)
vậy.....
\(\frac{\left(x\sqrt{y}+y\sqrt{x}\right).\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\)
\(=\frac{\sqrt{xy}.\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\)
\(=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)\)
\(=x-y\)( đpcm )
Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) ta có:
\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}\)
\(\ge\frac{9}{x+y+y+z+x+z}=\frac{9}{2\left(x+y+z\right)}\)
Dấu "=" xảy ra khi \(x=y=z\)
tớ ra kết quả là 2+\(\frac{5\sqrt{xy}}{x-\sqrt{xy}+y}\) mà thấy số xấu quá :(
Bài 1:
a: \(A=\left(\sqrt{x}+\sqrt{y}-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)
\(=\dfrac{x+2\sqrt{xy}+y-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)
\(=\dfrac{\sqrt{xy}}{x-\sqrt{xy}+y}\)
b: \(\sqrt{xy}>=0;x-\sqrt{xy}+y>0\)
Do đó: A>=0
\(\left|\frac{x+y}{2}-\sqrt{xy}\right|+\left|\frac{x+y}{2}+\sqrt{xy}\right|=\left|\frac{x+2\sqrt{xy}+y}{2}\right|+\left|\frac{x-2\sqrt{xy}+y}{2}\right|\)
=\(\left|\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{2}\right|+\left|\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{2}\right|\) (*)
Có \(\left(\sqrt{x}+\sqrt{y}\right)^2\ge0\Rightarrow\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{2}\ge0\)
\(\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\Rightarrow\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{2}\ge0\)
\(\Rightarrow\) (*) \(\Leftrightarrow\) \(\frac{x+2\sqrt{xy}+y+x-2\sqrt{xy}+y}{2}=\frac{2\left(x+y\right)}{2}=x+y=\left|x\right|+\left|y\right|\) ( vì x ; y >0)
Với x,y < 0 , đẳng thức trên sai ngay từ bước biến đổi (*) , vì x,y <0 thì \(\sqrt{x}\) và \(\sqrt{y}\) không xác định
Với \(x;y< 0\) đẳng thức vẫn đúng, do \(x;y< 0\Rightarrow xy>0\) ta biến đổi như sau:
\(\left|\frac{-\left|x\right|-\left|y\right|-2\sqrt{\left|x\right|\left|y\right|}}{2}\right|+\left|\frac{-\left|x\right|-\left|y\right|+2\sqrt{\left|x\right|\left|y\right|}}{2}\right|\)
\(=\left|\frac{-\left(\left|x\right|+2\sqrt{\left|x\right|\left|y\right|}+\left|y\right|\right)}{2}\right|+\left|\frac{-\left(\left|x\right|-2\sqrt{\left|x\right|\left|y\right|}+\left|y\right|\right)}{2}\right|\)
\(=\left|\frac{-\left(\sqrt{\left|x\right|}+\sqrt{\left|y\right|}\right)^2}{2}\right|+\left|\frac{-\left(\sqrt{\left|x\right|}-\sqrt{\left|y\right|}\right)^2}{2}\right|\)
\(=\frac{\left(\sqrt{\left|x\right|}+\sqrt{\left|y\right|}\right)^2}{2}+\frac{\left(\sqrt{\left|x\right|}-\sqrt{\left|y\right|}\right)^2}{2}\)
\(=\left|x\right|+\left|y\right|\)
Dễ thấy:
\(VT\ge\left(x+y\right)^2+1-\dfrac{\left(x+y\right)^2}{4}=\dfrac{3\left(x+y\right)^2}{4}+1\)
Áp dụng Cô-si:
\(\dfrac{3\left(x+y\right)^2}{4}+1\ge2\sqrt{\dfrac{3\left(x+y\right)^2}{4}.1}=\sqrt{3}\left|x+y\right|\ge\sqrt{3}\left(x+y\right)\)
Do đó:
\(\left(x+y\right)^2+1-xy\ge\sqrt{3}\left(x+y\right),\forall x,y\in R\)