K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2015

=0

tick nha
 

9 tháng 11 2015

Ta có : 2n là số chẵn 

=> (-1)2n = 1

2n + 1 là số lẻ 

=> (-1)2n+1 = -1

=> 1 + -1 = 0

Muốn hiểu lý do tại sao thì chat với mình nhé! Mình sẽ giải thích cho.

10 tháng 11 2015

(-1)^2n +(-1)^2n+1

=1+(-1)=0

tick nhé

11 tháng 11 2015

tick cho minh với minh mới dk 0 điểm

27 tháng 12 2015

100% =0  tui làm lâu rùi

2 tháng 8 2015

Gọi ƯCLN(2n+1;2n^2-1)=d

Ta có: 2n+1 chia hết cho d; 2n2-1 chia hết cho d

=>n(2n+1) chia hết cho d; 2n^2-1 chia hết cho d

=>2n^2+2 chia hết cho d; 2n^2-1 chia hết cho d

=>2n^2+2-2n^2-1 chia hết cho d

hay 1 chia hết cho d hay d=1

nên ƯCLN(2n+1;2n^2-1)=1

Vậy A là ps tối giản với mọi n

27 tháng 2 2018

Ta có:

\(P=2a^{2n+1}-3a^{2n}+5a^{2n+1}-7a^{2n}+3a^{2n+1}\)

\(P=\left(2a^{2n+1}+5a^{2n+1}+3a^{2n+1}\right)+\left(-3a^{2n}-7a^{2n}\right)\)

Suy ra: \(P=10a^{2n+1}+\left(-10a\right)^{2n}\)

Mà \(2n⋮2\)còn \(2n+1\)ko chia hết cho 2

Do đó: \(a>0\)thì P>0

27 tháng 2 2018

Nhầm cái chỗ suy ra:

\(P=10a^{2n+1}+\left(-10\right)a^{2n}\)

27 tháng 5 2022

Do \(2n+1\) và \(3n+1\) là các số chính phương dương nên tồn tại các số nguyên dương a,b sao cho \(2n+1\)\(=a^2\) và \(3n+1=b^2\). Khi đó ta có:

\(2n+9=25.\left(2n+1\right)-16.\left(3n+1\right)=25a^2-16b^2=\left(5a-4b\right).\left(5a+4b\right)\)

Do \(2n+9\) là nguyên tố,\(5a+4b>1\) và \(5a+4b>5a-4b\) nên ta phải có \(5a-4b=1\), tức là: \(b=\dfrac{5a-1}{4}\)

\(\Rightarrow\) ta có: \(\left\{{}\begin{matrix}2n+1=a^2\left(1\right)\\3n+1=\dfrac{\left(5a-1\right)^2}{16}\left(2\right)\end{matrix}\right.\)

Từ (1) : \(2n+1=a^2\Rightarrow n=\dfrac{a^2-1}{2}\) và a > 1 ( do n>0)

Thay vào (2): \(\dfrac{3.\left(a^2-1\right)}{2}+1=\dfrac{\left(5a-1\right)^2}{16}\)  => (a - 1).(a - 9) = 0

=> a = 9. Từ đó ta có n = 40

Vậy duy nhất một giá trị n thỏa mãn yêu cầu đề bài là : n = 40