Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}=1-\frac{1}{n}<1\)
Với số tự nhiên \(n\ge2\) Ta có \(\frac{1}{\left(2n\right)^2}=\frac{1}{4}.\frac{1}{n^2}<\frac{1}{4}.\frac{1}{n\left(n-1\right)}\)Vậy \(B=\frac{1}{4}\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+.........+\frac{1}{n^2}\right)\)Và
\(B<\frac{1}{4}\left(1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+................+\frac{1}{n-1}-\frac{1}{n}\right)\)Hay \(B<\frac{1}{4}\left(2-\frac{1}{n}\right)=\frac{1}{2}-\frac{1}{4n}<\frac{1}{2}\)
Vậy \(B<\frac{1}{2}\)
a) Ta có :
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)
\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}< 1\)
\(\Rightarrow\)A < 1
b) \(B=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}\)
\(B=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^3}+...+\frac{1}{n^2}\right)\)
vì \(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}< 2-\frac{1}{n}< 2\)
\(\Rightarrow B< \frac{1}{2^2}.2=\frac{1}{2}\)
a)\(\frac{1}{2^2}=\frac{1}{2.2}<\frac{1}{1.2};\frac{1}{3^2}=\frac{1}{3.3}<\frac{1}{2.3};...;\frac{1}{n^2}=\frac{1}{n.n}<\frac{1}{\left(n-1\right).n}\)
=>\(A<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+..+\frac{1}{\left(n-1\right).n}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{n-1}-\frac{1}{n}\)
=>A<1-1/n
mà 1-1/n<1
=>A<1
b)tương tự
a)Ta có: A= \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{n^2}\Rightarrow A<\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{\left(n-1\right)n}\)
\(\Rightarrow\)\(A<\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(\Rightarrow A<1-\frac{1}{n}\Rightarrow A<1\)